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Abstract

Transducers are applied to various areas in computer science. Especially, tree-to-word
transducers are of great interest, since they allow concatenation in the output and they
are a suitable model for general XML transformations. We study the equivalence prob-
lem for sequential and linear tree-to-word transducers and present a polynomial time
algorithm. The algorithm consists of a chain of polynomial time reductions, which ends
with the reduction to the morphism equivalence problem on context-free language,
which is in PTIME. We discuss the theoretical background, give complexities for all in-
volved algorithms and explain certain algorithms in detail. In our setting, the output
is represented by straight-line programs i. e. the output is compressed. Therefore, we
implemented a set of algorithms to work with large words especially to test equality of
SLP-compressed words.





Zusammenfassung

Übersetzer finden in zahlreichen Bereichen der Informatik ihre Anwendung. Baum-zu-
Wort Übersetzer sind dabei von besonderer Bedeutung, da sie die Verkettung der Aus-
gabe erlauben und ein passendes Modell für generelle XML-Transformationen bieten.
In dieser Arbeit analysieren wir das Äquivalenzproblem sequenzieller bzw. linearer
Baum-zu-Wort Übersetzer und präsentieren einen Algorithmus, welcher das Problem
in polynomieller Zeit löst. Der Algorithmus besteht aus einer Kette von Reduktionen,
welche alle in polynomieller Zeit durchgeführt werden können. Am Ende der Kette
steht das Morphismusäquivalenzproblem auf kontextfreien Sprachen, welches in poly-
nomieller Zeit lösbar ist. Wir diskutieren alle notwendigen theoretischen Konzepte,
geben für jeden implementierten Algorithmen eine Obergrenze bezüglich der Laufzeit
an und erklären wichtige Algorithmen im Detail. Wir gehen davon aus, dass die Aus-
gabe in Form von sogenannten straight-line programs vorliegt d.h. die Ausgabe liegt
in komprimierter Form vor. Diese speziellen kontextfreien Grammatiken beschreiben
Wörter exponentieller Größe. Alle implementierten Operationen auf diesen großen
Wörten werden diskutiert. Besonders hervorzuheben ist der Äquivalenztest für SLP-
komprimierte Wörter.
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1. Introduction

Automata theory is a beautiful and exciting theoretical branch of computer science, es-
tablished during the 20th century. It deals with the logic of computation with respect to
simple machines and studies their mathematical properties. In 1936, the very first the-
oretical device, the turing machine, was introduced by Alan Turing. Between 1940 and
1950, finite state automata were studied by W. McCulloch, W. Pitts, S. Kleene and many
more. Tree automata gained interest in the 1960s. They have been designed and studied
by J.R. Büchi, M.O. Rabin, Doner, Thatcher, etc. Many useful concepts and ideas came
out of this program. Tree automata can be used to define XML schema languages, to
analyse functional programs or even for model-checking of parallel programs [11]. Due
to the popularity of XML, automata over unranked trees were developed and studied
since the year 2000. The structure of common XML documents gives a natural tree
structure. For example <body><br></br><div><p></p></div></body> can be in-
terpreted as a tree of the following form:

body

div

p

br

Transducers are the natural extensions of automata or more precise, they are automata
that turns their input into output. The general case to consider is one where both inputs
and outputs are time-series, and the current set of possible outputs depends not just on
the current input but on the whole history of previous inputs. Different classes of trans-
ducers offer different capabilities and properties. However, a too powerful class results
in undecidability of the equivalence problem of transducers of this class e. g. if we allow
non-determinism, equivalence becomes already undecidable for very restricted classes
of transducers [51].

Transducers are applied to various areas in computer science, including static analysis
of software [18], automatic translation of natural languages [39, 40, 42], program and
data transformation [54, 43], rewriting systems [55], document processing [44, 15] and
cryptography [37]. Consequently, they are of great interest in the current research.



1. Introduction

(Deterministic) top-down tree-to-word transducers [53] and macro tree transducers [14]
offers a fundamental model [51]. Macro tree transducers can be seen as a recursive
first-order functional program generating trees. The choice of functions is triggered by
top-down pattern matching of an input tree. They combine the feature of top-down tree
transducers [48] and macro-grammars [17]. They are able to carry context informations
to further processing steps which is not possible for top-down tree transducers.

For each class of automata and transducer, a very interesting question to ask is whether
two machines of the same class are equivalent. In case of tree transducers it is easier
to decide equivalence compared to macro tree transducers, since they output trees i. e.
the output is structured (see [16]). On the other hand, the decidability of equivalence of
two macro tree transducers is a well-known and long-standing open question [9]. The
ability of concatenation in the output makes them so interesting.

Another very interesting class of transducers allowing concatenation in the output are
tree-to-word transducers. Fortunately, the equivalence for tree-to-word transducers
is decidable [51]. Restricted classes like deterministic non-copying top-down tree-to-
word transducers, also called linear tree-to-word transducers (LTWs) [9], remain pow-
erful despite some limitations, most of them caused by determinism. Similar to deter-
ministic top-down tree automata, LTWs read trees in a top-down fashion and addition-
ally output words before and after each node of the input tree is handled. They may
re-order the output by re-ordering the child nodes of each node in the input tree. If we
drop the ability of re-ordering, we are in the class of sequential tree-to-word transduc-
ers (STWs) [52].

Example 1.1. The following LTW is defined by rules on the right. q0 is the initial state.

body

inner

spandiv

attr

attr

closeheight

100

width

100

q0(body)→ <body q1(x2)q2(x1)></body>
q1(attr)→ q2(x1)q1(x2)

q1(close)→ ε

q2(height)→ height = q3(x1)

q2(inner)→ q4(x2)q5(x1)

q4(div)→ <div></div>
q5(span)→ <span></span>

. . .

It outputs

<body width = 100 height = 100><span . . .></span><div . . .></div></body>

The input tree is displayed on the left. The order of the span and div tag is re-ordered.
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In 1995, Wojciech Plandowski proved in [47, 35] by giving a construction for a test set
for arbitrary context-free languages (CFLs), that the morphism equivalence problem on
context free languages is in PTIME. Surprisingly, [52] found a connection between the
morphism equivalence on CFLs and the equivalence of STWs. The authors reduce the
problem of equivalence problem of STWs to the morphism equivalence problem by con-
structing a context-free grammar that generate all successful parallel runs of two STWs.
The size of the grammar is polynomial in the size of the two STWs and therefore, the
equivalence problem of STWs is in PTIME too. This result is quite surprising, since for
many other classes of automata the equivalence test is strongly connected to some kind
of normal form. Later, [38] introduces the so called earliest normal form which leads to
a Myhill-Nerode characterization. Recently, [9] showed that we can apply the reduction
presented in [52], with some preprocessing steps, to LTWs. Additionally, the authors
showed that all preprocessing steps are polynomial in the size of the transducers, which
implies that the equivalence problem for STWs is in PTIME.

In this thesis we implemented a polynomial time algorithm for deciding the equiv-
alence problem on STWs and LTWs by combining results of the recent research. We
solve the main problem by following a chain of reductions given by [9, 52, 47, 35],
starting from an instance of the equivalence problem of LTWs, receiving an instance
of the morphism equivalence problem on a CFG that generating all successful parallel
runs of the LTWs (see fig. 1.1) and finally, receiving a test set containing all so called
fully-compressed words we have to compare. For better understanding, and to anal-
yse the complexity in straightforward way, we start by the word equivalence problem
of fully-compressed words and end up with the LTW equivalence problem. For solv-
ing the main problem we had to work with a large variety of concepts from automata
theory and formal languages including context-free languages, straight-line programs
(SLPs), word automata, tree automata, nested word-to-word transducers (N2Ws), STWs
and LTWs. Each output word is represented by a straight-line program such that the
length of words can be exponential in the size of their representation. Since we im-
plemented an polynomial time algorithm it is necessary to manipulate and compare
these large words in polynomial time. Thus a main part of this thesis was to imple-
ment an efficient algorithm for the equivalence test of so called SLP/fully-compressed
words. Solving the morphism equivalence problem on context-free languages leads to
the equivalence test of words represented by straight-line programs. Since we exten-
sively manipulate and analyse structure and the language of CFGs, the result of this
thesis is not only a single algorithm for testing equivalence of STWs and LTWs, it is in
fact a whole software library which supports a large variety of operations, mainly on
CFGs.

We decide to structure the thesis in a bottom-up way. We start by very basic and small
pieces of the complete solution, until we finally discuss the whole picture. In each
chapter we give proofs for the most important statements and analyse the complexity
of all implemented algorithms. The thesis is structured as follows:

• In chapter 2 we give the required theoretical background, introducing CFGs, SLPs

3



1. Introduction

and all kind of required transducers and automata.

• Chapter 3 contains the description of our implementation of the most basic oper-
ations on CFGs.

• Chapter 4 is one of the main chapters. It contains the description of the recom-
pression algorithm presented in [34] testing equality of fully-compressed words.
Furthermore, we describe an extension of this technique: The fully-compressed
pattern matching. We use the resulting algorithm to solve the singleton set prob-
lem for CFGs, which is also presented in this chapter.

• In chapter 5 we give insights on the generation of test sets for arbitrary context-
free languages defined by CFGs and show how we can use the recompression
technique to solve the morphism equivalence problem on CFGs, which also leads
us to an algorithm for solving the periodicity problem for CFGs.

• Chapter 6 is the last chapter containing descriptions of algorithms. We explain
each step of the reduction chain from the equivalence test for STWs to LTWs to
nested word-to-word transducers to the morphism equivalence problem on CFGs.
This chapter finally gives the big picture.

• In chapter 7 we give performance measures for the equivalence test of fully-
compressed words and show the steps and the running time of an example for
the equivalence test for LTWs.

• In the last chapter we draw our conclusion and discuss some open questions,
challenges and some ideas for future work.

Equivalence test for LTWs L1,L2

(section 6.4)

Equivalence test for STWs S1,S2

(section 6.3)

Equivalence test for dN2W N1,N2

(section 6.2)

Morphism µ1, µ2 equivalence on a CFG G
(chapter 5)

Equivalence of fully-compressed words µ1(ω) and µ2(ω)
(chapter 4)

Figure 1.1.: Overview of the structure of the thesis.
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2. Preliminaries

We use basic notations from formal language and automata theory. For details we re-
fer the reader to [30, 11, 4]. The definitions of transducers are based on [52, 9]. We
notate ∆ = {a1, . . . , an} as the finite alphabet of a grammar or a word automata. We
call elements from ∆ letters. Any finite sequence of elements from ∆ is called word
over the alphabet ∆. The word a1, . . . , ak is denoted as a1 . . . ak. We usual write ω
for a word over ∆. ε is called the empty word. The set of symbols occurring in ω is
alph(ω) = {a1, . . . , ak}. For a natural number k we define the sets of integral numbers
[k] = {1, . . . , k} and [k]0 = {0} ∪ [k]. If ω = a1 . . . ak, i ∈ N then the i-th letter of the
word ω is denoted as

ω[i] =

{
ai if i ∈ [k]

ε otherwise,

and a sub word starting with the i-th letter and ending with the j-th letter as

ω[i . . . j] = ω[i] . . . ω[j].

We call ω[1 . . . i] and ω[j . . . |ω|] a prefix and suffix of ω respectively. The size of a word is
equal to the length of the sequence i. e. |ω| = |a1 . . . ak| = k and |ε| = 0. If ω is a prefix of
ω′ we express this by ω v ω′. We introduce concatenation concat : ∆∗×∆∗ → ∆∗ defined
as concat(ω1, ω2) = ω3 with ω3 = ω1[1 . . . |ω1|]ω2[1 . . . |ω2|]. We write ω1ω2 instead of
concat(ω1, ω2). It is easy to see that ∆∗ with concatenation forms a monoid. We denote
by ωi for i ≥ 0, the concatenation of i words of ω and define ω0 = ε. We extends
the concatenation to work with sets of words in a natural way. Let L1, L2 be two sets
containing words over ∆ then L3 = L1L2 is defined as

L3 = {uv | u ∈ L1, v ∈ L2}

We note a−1 the inverse of a symbol a where aa−1 = a−1a = ε. The inverse of a word
ω = a1 . . . ak is ω−1 = a−1

k . . . a−1
1 . Any subset L ⊆ ∆∗ of words generated by ∆ is called

a language over the alphabet ∆. ∆∗ is as usual defined as the Kleene star on ∆ i. e.

∆∗ = {ε} ∪
⋃
i∈N

∆i.

We use the random access model (RAM) with uniform cost measure as our underlying
computational model. Furthermore, we assume the reader is familiar with the Big O
notation defined in [8].



2. Preliminaries

2.1. Grammars and languages

2.1.1. Context-free grammars

A context-free grammar (CFG) G is a tuple of finite sets G = (∆, N, S, P ), where ∆ is
the set of terminals, N is the set of non-terminals, S is the start symbol or axiom and
P ⊂ N × (∆ ∪ N)∗ is a set of productions. We denote productions p as X → α, where
X ∈ N is its left-hand side (lhs(p)) and α ∈ (Σ∪N)∗ its right-hand side (rhs(p)). We always
write non-terminals in upper- and terminals in lower-case. The size of a production |p|
is the length of its right-hand side i. e. | rhs(p)|. The size of the grammar is

|G| =
∑
p∈P
| rhs(p)|

The language LX(G) of a non-terminal X is defined inductively as follows:

X → α0X1 . . . Xnαn ∈ P
ω1 ∈ LX1(G), . . . , ωn ∈ LXn(G)

X1 . . . Xn ∈ N
α0, . . . αn ∈ ∆∗

α0ω1 . . . ωnαn ∈ LX(G)

The language of the grammar L(G) is defined as LS(G).

2.1.2. Chomsky normal form

A context-free grammar G = (∆, N, S, P ) is in Chomsky normal form (CNF) if each pro-
duction in P is of the following form:

(i) X → X1X2 (binary production)

(ii) Xa → a (terminal production)

(iii) S → ε,

where X1, X2 ∈ N and a ∈ ∆ and S does not appear in any right-hand side of a
production. If a grammar is in weak Chomsky normal form (wCNF), we additionally
allow productions of the following form:

(iv) X → Y (unit production)

(v) X → ε, (epsilon production)

where Y ∈ N and we allow that S appears at any right-hand side of a production of
the grammar.
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2.1.3. Straight-line programs

A straight-line program (SLP) over the finite alphabet ∆ is a context free grammar G =
(∆, N, S, P ) such that the following conditions holds:

(i) For every non-terminal X ∈ N there exits exactly one production p ∈ P such that
lhs(p) = X .

(ii) The relation {(X,Y ) | p = X → α, Y ∈ alph(α)} is acyclic.

The language generated by a SLP contains exactly one word and there is only one deriva-
tion tree for this word. This also holds for each language of a non-terminal i. e. ∀X ∈
N : |LX(G)| = 1. ωG is the word generated by G. val(x) = x if x ∈ ∆∗ and val(X)
with X ∈ N is the word derived by starting from the production p with lhs(p) = X i. e.
val(S) = ωG. In context of SLPs we say p is the production of X if lhs(p) = X .

2.2. Transducers and Automata

We define the size of an automata by the the sum of sizes of its rules (excluding output
words), the size of its alphabets and its set of states.

2.2.1. Word Automata

For the sake of completeness we give a standard definition of word automata. A finite
word automata is a tuple A = (Q,∆, δ, I, F ), consisting of

• a finite set of states Q,

• the alphabet i. e. a final set of symbols,

• a set of initial states I ⊆ Q,

• a set of final states F ⊆ Q

• a set of rules δ ⊆ Q× (∆ ∪ {ε})×Q.

Let us define the ε-closure (ε-cl(q)) of a state q ∈ Q as follows:

q ∈ Q
q ∈ ε-cl(q)

q, p, p′ ∈ Q p ∈ ε-cl(q) p
ε−→ p′

p′ ∈ ε-cl(q)

Let ω = a1a2 . . . an ∈ ∆∗, we say ω ∈ L(A) or A recognize ω if there exists a sequence
of states q0, . . . , qn with

(i) q0 ∈ {ε-cl(q) | q ∈ I}

7
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(ii) qi+1 ∈ ε-cl(q′), where q′
ai+1−−−→, qi+1 ∈ δ for each i = 0, . . . , n− 1 and

(iii) qn ∈ F

A is deterministic if there are no ε-rules, I is a singleton set and for each a ∈ ∆ and q ∈ Q
there is at most one rule q a−→ p ∈ δ.

2.2.2. Ranked trees

We call the couple (Σ, rank), where Σ is a finite set of symbols and rank is a mapping
rank : Σ → N0 that defines the rank (rank(f)) of a symbol f ∈ Σ, a ranked alphabet. We
often write Σ instead of (Σ, rank). We notate the set of symbols of rank i by Σi. The set
TΣ of ranked trees over Σ is the smallest set defined by:

a ∈ Σ0

a ∈ TΣ

k ≥ 1 f ∈ Σk ∀i ∈ [k] : ti ∈ TΣ

f(t1, . . . , fk) ∈ TΣ

The leaves of the tree are labelled with constant symbols and the internal nodes are
labelled with symbols of positive rank, with out-degree equal to the rank of the label.
A tree t ∈ TΣ can also be seen as a partial function t : N∗ → Σ with the non-empty and
prefix-closed domain Pos(t) satisfying the following additional properties:

k ∈ Pos(t) t(k) ∈ Σn n ≥ 1

{j | kj ∈ Pos(t)} = [n]

k ∈ Pos(t) t(k) ∈ Σ0

{j | kj ∈ Pos(t)} = ∅

2.2.3. Nested words and unranked trees

Let Σ be a finite set of symbols. The set T uΣ is the smallest set defined by:

a ∈ Σ
a ∈ T uΣ

k ≥ 1 f ∈ Σ ∀i ∈ [k] : ti ∈ T uΣ
f(t1, . . . , fk) ∈ T uΣ

Also these trees can be seen as a partial function with the non-empty and prefix-closed
domain Pos(t), which satisfies the same properties as above. We call Σ̂ = {op, cl}×Σ a
nested word alphabet. Linearisation of unranked trees are words in Σ̂∗ that are well-nested
in that all opening parenthesis are properly closed. The linearisation lin : T uΣ → Σ̂∗ is
defined as follows

lin(a(t1, . . . , tn)) = (op, a) lin(t1) . . . lin(tn)(cl, a).

We define the set of nested words over Σ by N(Σ) = {lin(t) | t ∈ T uΣ}. A more general
definition can be found in [4].
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2.2.4. Linear and sequential tree-to-word transducers

A linear tree-to-word transducer (LTW) is a tuple L = (Σ,∆, Q,QI , δ) where

• Σ is a finite ranked alphabet,

• ∆ is a finite word alphabet of output symbols,

• Q is a finite set of states,

• QI ⊆ Q is the set of initial states,

• δ is a set of rules of the form

q(f(x1, . . . , xn))→ u0q1(xσ(1)) . . . qn(xσ(n))un

where q, q1, . . . qn ∈ Q, f ∈ Σn, u0, . . . un ∈ ∆∗ and σ is a permutation from [n] to
[n].

Since LTWs and STWs are deterministic, there is at most one rule rwith lhs(r) = q(f(x1, . . . , xn))
for each pair (q, f). Furthermore, for every f ∈ Σ there exists at most one state q ∈ QI
such that there exists a rule r with lhs(r) = q(f(x1, . . . , xn)). To shorten the notation we
denote rhs(r) = q(f). The function JLKq of a state q is defined inductively as follows:

q(f)→ u0q1(xσ(1)) . . . qn(xσ(n))un ∈ δ
JLKq(f(t1, . . . tn)) = u0JLKq1(tσ(1)) . . . JLKqn(tσ(n))un

q(f) is not defined in δ
JLKq(f(t1, . . . tn)) = undefined

The function JLK of transducer L is defined as

JLK(t) =
⋃
q∈QI

JLKq(t),

dom(L) is the domain of L i. e. all trees t that are recognized by L. We write Lq for the
language over ∆, which is generated by the state q. A sequential tree-to-word trans-
ducer (STW) is a LTW where for each rule, σ is the identity. LTWs are non-copying and
STWs additionally order-preserving.
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2.2.5. Nested word-to-word transducers

A nested word-to-word transducer (N2W) N is a tuple of finite sets N = (Σ, ∆, Q, Γ, R,
QI , QF ) where

• Σ is a finite unranked alphabet,

• ∆ is a finite word alphabet of output symbols,

• Γ is a finite stack alphabet,

• Q is a finite set of states,

• QI ⊆ is the set of initial states,

• OF ⊆ is the set of final states,

• R ⊆ Q2 × Σ̂×∆∗ × Γ is a set of rules of the form

q
β a/u:γ−−−−→ q′

where q, q′ ∈ Q, a ∈ Σ, u ∈ ∆∗, γ ∈ Γ and β ∈ {op, cl}.

If β = op and N is in state q it can read (op, a), output u, put γ onto the stack and go
in state q′. If β = cl, N is in state q and γ is the top most element on the stack, the
transducer can read (cl, a), output u, remove γ from the stack and go in state q′.

As always, the left-hand side of a rule is lhs(r) = q and the right-hand side rhs(r) = q′.
Furthermore, we define the output out(r) = u, the stack symbol ssy(r) = γ and the
the action act(r) = (β, a) of r. An N2W defines a relation JN K based on runs, which
annotate opening and closing events of nodes of unranked trees by rules. Nodes can be
totally ordered using Pos(t).

We define the set of traversal actions Act(t) ⊆ {op, cl} × Pos(t). Act(t) contains all ele-
ments of a preorder traversal of t. We write (β, π) < (β′, π′) if (β, π) is properly before
(β′, π′). prec((β, π)) is the immediate predecessor of (β, π).

A run of N on a tree t = f(t1, . . . , tn) is a function τ : Act(t)→ R such that

lhs(τ(op, ε)) ∈ QI

and for all (β, π) ∈ Act(t) :

ssy(τ(op, π)) = ssy(τ(cl, π)) ∧
rhs(τ(prec(β, π))) = lhs(τ(β, π)) ∧
act(τ(β, π)) = (β, a),
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where a is the label of the node π in t. We call a run τ successful if rhs(τ(cl, ε)) ∈ OF i. e.
the run traverses back to the root. We finally define JN K by

JN K = {(t, out(τ(e1)) . . . out(τ(en))) | t ∈ T uΣ, τ successful run of N on t,
the actions of t are e1 < . . . < en}.

A N2W is deterministic if QI is a singleton set and for each q ∈ Q and each (op, a) ∈ Σ̂
there exists only one opening-rule of the form

q
op a/u:γ−−−−−→ q′

and for each q ∈ Q, (cl, a) ∈ Σ̂ and γ ∈ Γ there exits only one closing-rule of the form

q
cl a/u:γ−−−−→ q′.

We call N2W top-down if all closing-rules have the form

q
cl a/u:q′−−−−−→ q′.
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3. Algorithms on CFGs and SLPs

In this chapter, we give basic algorithms on context-free grammars. We often assume
that grammars are in (weak) Chomsky normal form without any useless productions.
Therefore, we implemented algorithms for the deletion of useless productions and the
transformation of context-free grammars into (weak) Chomsky normal form.

If we consider words derived from a context-free grammar, we risk an exponential
blow up in size. Even the shortest word can be exponential in size of the grammar.
To keep complexities polynomial, words of a grammar are represented by straight-line
programs. Therefore, we had to implement all required operations on words dealing
with SLPs e. g. the deletion of some prefix of a word. A basic, but non-trivial task for
SLP-compressed words is equality checking, which we consider in the next chapter.

For solving the morphism equivalence problem on CFGs (see chapter 5) we construct a
linear grammar by extracting SLPs, representing short words of a context-free language.
Furthermore, we have to compute periods of quasi-periodic languages (see section 6.4).
Therefore, we give algorithms for the construction of straight-line programs for the
shortest, possibly non-empty word of a context-free language.

We will see that the complexity of all considered algorithms of this chapter, except the
algorithm for constructing the shortest word, are linear in the size of the grammar.
In case of the algorithm for the construction of the shortest we have to deal with an
additional logarithmic factor.

3.1. Data structure

A context-free grammar is represented by an object containing a set of productions
and a set of axioms. N is defined by all non-terminals occurring on the right- or left-
hand sides and ∆ is defined by all terminals occurring on the right-hand sides. We use
the default hashset implementation of the Java Standard Library. In case of SLPs each
non-terminal can be mapped to exactly one production. To accelerate the access to a

D B C B A f d

Figure 3.1.: Data structure of a production D → BCBAfd. The left-hand side stored in
a linked list.
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specific production of a SLP we support the mapping M : N → P by replacing the set
of production by a mapping. We use the default hashset implementation of the Java
Standard Library with keyset N and values P . Ensuring that each symbol in N ∪∆ can
be identified by a unique id ∈ N and by using an appropriate hash functions, we get
the following lemma:

Lemma 3.0.1. Let P be the set of productions, N be the set of non-terminals and Map : N →
P described above. We achieve average constant running times for:

(i) Adding a new element to P or N ,

(ii) searching for an element P or N ,

(iii) removing an element from P or N ,

(iv) and for accessing a production p of a SLP, where lhs(p) is given.

In the memory, a production is represented by a simple Java object with members left
and right representing the left- and right-hand side of a production. Non-terminals
and terminals are of type GSymbol. A GSymbol can be identified as terminal or non-
terminal. Left is a single GSymbol and right is a linked list of GSymbols. Searching
for any GSymbol with a specific property, that we can test in O(1), requires O(| rhs(p)|)
if we have a pointer to the specific production. A GSymbol contains an element of
generic type. Consequently, it is possible that the element of a terminal symbol is a
complex object like a couple of rules of different linear tree-to-word transducers. It is
even possible that a terminal symbol is a word represented by a SLP or a simple list of
symbols, but it has to stand for a word over ∆. If a non-terminal represents a word, all
algorithms working with or calculating the exact length of a word in L(G) do no longer
work. In this chapter we assume that each terminal symbol a in G is a single character,
i. e. |a| = 1.

Lemma 3.0.2. Suppose x∗ is a pointer to the symbol x ∈ (∆∪N) occurring on the right-hand
side of a production, then the following time bounds hold:

(i) We can remove or update x in O(1).

(ii) We can insert k symbols after or before x in O(k).

(iii) We can find all symbols occurring on the right-hand side of a production p with a certain
property, that we can test in O(1), in O(| rhs(p)|).

(iv) We can find all symbols inG with a certain property, that we can test inO(1), inO(|G|).

Since the Standard Java Edition does not support access to nodes of the default imple-
mentation of a linked list, we implemented our own linked list. A node of the linked
list contains an element of generic type. We refer to references to nodes of an element x
as pointers to x i. e. x∗. Pointers has an important role when we discuss equality testing
and the pattern matching for compressed words (see section 4.1 and 4.2).
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3.2. Algorithms on CFGs

Definition 3.1 (Nullables). Let G = (∆, N, S, P ) be a context-free grammar. A non-
terminal X ∈ N is called nullable for G if there exists some derivation starting from X
that generates the empty word i. e. X ⇒∗G ε. NullG is the set of all nullables of G. We can
define NullG inductively:

X → ε ∈ P
X ∈ NullG

X → X1 . . . Xn ∈ P ∀i ∈ [n] : Xi ∈ NullG
X ∈ NullG

A production p is called nullable if there is a derivation of the following form lhs(p)⇒G

rhs(p)⇒∗G ε.

Remark 3.2. A nullable production contains no terminals. Clearly ε ∈ L(G) ⇐⇒ S ∈
NullG.

Definition 3.3 (Productives). Let G = (∆, N, S, P ) be a context-free grammar. A non-
terminal X ∈ N is called productive for G if there exists some derivation starting from
X that generates a word i.e. X ⇒∗G ω for some ω ∈ ∆∗. ProdG is the set of all productives
of G, which can be defined inductively:

X → ω ∈ P, ω ∈ ∆∗

X ∈ ProdG
X → α0X1α1 . . . αn−1Xnαn ∈ P ∀i ∈ [n] : Xi ∈ ProdG

X ∈ ProdG

A production p is productive if there is a derivation of the following form lhs(p) ⇒G

rhs(p)⇒∗G α with α ∈ ∆∗.

Definition 3.4 (Reachables). Let G = (∆, N, S, P ) be a context-free grammar. We say
X ∈ N is reachable if there exists a derivation S ⇒∗G αXβ, for some α, β ∈ (N ∪ ∆)∗.
ReachG is the set of all reachables of G defined by the following properties:

S ∈ ReachG
X → α0X1α1 . . . αn−1Xnαn ∈ P X ∈ ReachG j ∈ [n]

Xj ∈ ReachG

A production p is reachable if lhs(p) ∈ ReachG.

ProgG and NullG are inductively defined in a bottom-up fashion. Some other proper-
ties, like the minimal length of a non-terminal, can also be defined likewise. To compute
those sets or properties efficiently, we use a data structure inspired by [30] (see fig. 3.2).
We use a mapping Map to access the linked list for a given non-terminal X in O(1).
The linked list for X contains a node for each occurrence of X on the right-hand sides.
The node contains two pointers. One points to the counter of the production p and the
other one points to the production p. In a naive implementation we could search for
all occurrences of a non-terminal by going over all productions in P , whenever we add
this non-terminal to the set of nullables. This would result in a quadratic running time.
With the data structure above, which we can construct in O(|G|), we reduce this to a
linear running time.
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Lemma 3.4.1. Algorithm 1 construct the described data structure in O(|G|).

Proof. First we construct a linked list LX for each terminal X in N and put these lists
into a hashmap i. e. Map[X] = LX . We go over the whole grammar G and add for
each non-terminalX , that occurs on the right-hand side of a production p, a node to the
linked list identified by X i. e. we append the node to Map[X]. Since we can access the
linked list in average O(1) time, we can do this in overall constant time. While going
over the right-hand side of a production, we can construct a counter and all required
pointers in constant time as well. �

Lemma 3.4.2. Algorithm 2 runs in O(|G|) and returns all nullable productions.

Proof. Line 5 in alg. 2 runs in O(|G|), because each operation inside the loop requires
O(1) time. Since we add a non-terminal X ∈ N only once to the heap H , we iterate
over the linked list of X only once and therefore line 10 requires O(|G|). �

Lemma 3.4.3. Algorithm 31 runs in O(|G|) and returns all productive productions.

Proof. The proof is similar to the proof of lemma 3.4.2. �

The algorithm that returns ReachG does not use the data structure from above since we
progress in a top-down fashion.

D B C B A f B 5

A a B f B a a 2

Figure 3.2.: Data structure inspired by [30] for P = {D → BCBAfB,A → aBfBaa}.
The black arrowed lines sketch the linked list for B. The dotted black
lines stand for pointers of a node and the black dotted lines for pointers
to the counter of a production. The blue ones represents pointers to the
production.
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Algorithm 1: GETMAP: Construct the data structure displayed in fig. 3.2.

input : G = (∆, N, S, P );
output: Map, representing the data structure described in [30];

1 initialize the mapping Map;
2 foreach X ∈ N do
3 Map[X]← initialize new linked list LX ;

4 foreach p ∈ P do
5 counter ← number of non-terminals occurring on rhs(p);
6 foreach X ∈ rhs(p) do
7 node← (p, counter);
8 LX ←Map[X];
9 append node to LX

10 return Map;

Algorithm 2: GETNULLABLES: Computes the set of nullable productions.

input : G = (∆, N, S, P );
output: NullG;

1 Map← GETMAP(G);
2 H ← ∅;
3 NullG ← ∅;
4 NT ← ∅;
5 foreach p ∈ P do
6 if p = X → ε then
7 H ← H ∪ p;
8 NullG ← NullG ∪ p;
9 NT ← NT ∪ lhs(p);

10 while H 6= ∅ do
11 p← first element contained in H ;
12 H ← H \ p;
13 foreach (q, counter) ∈Map[lhs(p)] do
14 counter ← (counter − 1);
15 if counter = 0 then
16 NullG ← NullG ∪ q;
17 if lhs(p) /∈ NT then
18 H ← H ∪ q;
19 NT ← NT ∪ lhs(q);

20 return NullG
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Algorithm 3: GETREACHABLES: Computes the set of reachables

input : G = (∆, N, S, P );
output: ReachG;

1 ReachG ← {S};
2 L← {S};
3 C ← ∅;
4 while L 6= ∅ do
5 foreach X ∈ L do
6 foreach p ∈ {q ∈ P | lhs(q) = X} do
7 foreach Y ∈ rhs(p) do
8 if Y /∈ ReachG then
9 ReachG ← ReachG ∪ {S};

10 C ← C ∪ {S};

11 L← C;
12 C ← ∅;
13 return ReachG;

Lemma 3.4.4. Algorithm 3 runs in O(|G|) and gives us all reachable non-terminal symbols.

Proof. We add each non-terminal to L at most once. Therefore, we have to go over a
specific production at most once. �

We can now combine algorithm 31 and 3 to construct a CFG G′ that contains only useful
productions and non-terminals.

Lemma 3.4.5. Let G = (∆, N, S, P ) be a CFG. We can construct in O(|G|) a CFG G′ =
(∆, N ′, S, P ′), with P ′ ⊆ P,N ′ ⊆ N and L(G) = L(G′) such that P = {p ∈ P | p is useful}
and N ′ = {X ∈ N | X is useful}.

Proof. From the definition of useful non-terminals and productions it follows that: If
our construction of P ′ and N ′ is correct, L(G) = L(G′) holds. We choose the following
order to construct P ′ and N ′:

1. We eliminate unproductives by using alg. 31.

2. We eliminate unreachables by using alg. 3.

We have to show that eliminating all unreachables, after eliminating all unproductives,
does not generate new unproductives. LetX ∈ N ′ be a non-terminal that is not produc-
tive. Since X was productive before deleting reachables and X is no longer productive
after eliminating unreachables, there has to be a derivation X ⇒∗Gprod ω1Y ω2 ⇒Gprod ω,
such that Y is unreachable. Since X is reachable and there is a derivation X ⇒Gprod

ω1Y ω2 it follows that Y is reachable, which leads to a contradiction. �
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Lemma 3.4.6. Let G = (∆, N, S, P ) be a CFG, then we can construct in O(|G|) a grammar
G′ = (∆, N ′, S, P ′), that is in weak Chomsky normal form. Furthermore the size of the new
grammar is in O(|G|) and L(G) = L(G′).

Proof (sketch). For each terminal a ∈ ∆ we add a fresh non-terminal Xa and a produc-
tion Xa → a. We replace each terminal a in a production by Xa. After this transforma-
tion we replace a production X → X1 . . . Xn by X → X1A1, A1 → X2A2 . . . An−2 →
Xn−1Xn, where A1, . . . An−2 are fresh non-terminals. The constructed grammar is in
weak Chomsky normal form. Furthermore, all steps can be done inO(|G|) and the size
of the grammar only increases by a constant factor. For details we refer to [30]. �

Algorithm 4: GETUSEFUL: Deletes all useless productions from a CFG.

input : G = (∆, N, S, P );
output: G without useless productions;

1 G′ ← GETPRODUCTIVES(G);
2 G′ ← GETREACHABLES(G′);
3 return G′

Lemma 3.4.7. Let G = (∆, N, S, P ) be a context-free language in wCNF, then we can con-
struct a grammar G′ without nullable productions p with lhs(p) 6= S in O(|G|). Additionally,
the size of the new grammar is in O(|G|) and L(G) = L(G′).

Proof (sketch). We first compute all nullable productions and non-terminals following
lemma 3.4.2 inO(|G|). LetG′ = (∆, (N\NullG)∪{S}, S, P ′). P ′ consists of the following
productions:

X → α ∈ P α ∈ (N ∪∆)
X → α ∈ P ′

S ∈ NullG
S → ε ∈ P ′

X → X1X2 ∈ P i, j ∈ {1, 2} ∧ j 6= i Xi ∈ NullG

X → Xj ∈ P ′
X → X1X2 ∈ P ′

The grammar size increases at most by O(|G|), since we replace each production by at
most 3 new productions. We can prove by induction over the derivation that L(G) =
L(G′). �

Algorithm 5: TOWEAKCNF: Transforms a CFG into weak CNF.

input : G = (∆, N, S, P );
output: G transformed into wCNF;

1 G′ ← GETUSEFUL(G);
2 G′ ← REPLACETERMINALS(G′);
3 G′ ← TOBINARY(G′);
4 return G′
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Definition 3.5 (Shortest word and shortest non-empty word). Let G = (∆, N, S, P ) be
a context-free grammar. We call ω ∈ L(G) a shortest word of L(G) if ∀ω′ ∈ L(G) : |ω′| ≥
|ω|. ω is a shortest non-empty word of L(G) if ∀ω′ ∈ L(G) \ {ε} : |ω′| ≥ |ω| and ω 6= ε.

Definition 3.6 (Minimal length). We define the minimal length lenP (p) of a production
p inductively. Let p = X → ω ∈ ∆∗, then len(p) = |ω|. Let p = X → (N ∪ ∆)∗ and
X1, . . . , Xk non-terminals of the right-hand side of p, then

lenP (p) :=
k∑
i=1

min
q∈P

lhs(q)=Xi

(lenP (q)) + countt(p),

where countt(p) is the number of terminals at the right-hand side of p. The minimal
length of a non-terminal X is defined as

lenN (X) := min
p∈P

lhs(p)=X

(lenP (p)).

Lemma 3.6.1. Let G = (∆, N, S, P ) be a non-empty context-free grammar containing only
useful productions and let G′ = (∆, N, S, P ′) be a SLP where P ′ contains for each X ∈ N
exactly one production p with lenP (p) = lenX(p) then L(G′) is a singleton set containing the
shortest word of G.

To construct a shortest word we compute the shortest length of each production. We
can do this by using the algorithm for computing all productives but we replace the
unsorted heap by a sorted one. We sort the productions according to lenP in ascending
order.

Lemma 3.6.2. LetG be a non-empty language, then Algorithm 6 computes a set of productions
that represents a SLP G that generates a single shortest word of G.

Proof. We have to prove that ∀X ∈ N : len∗N (X) = lenN (X). Let p1, . . . , pn be the
order in which the productions became productive i. e. the order in which we compute
len∗X(p). If the following holds

(i) len∗P (p) = lenP (p)

(ii) lenP (p1) ≤ . . . ≤ lenP (pn),

then it follows that if we pop a production p from the sorted heap H , len∗N (lhs(p)) =
lenN (p). Therefore, we extract only the shortest productive productions for the con-
struction of the SLP. Since L(G) is not empty, S is productive, consequently, the con-
structed SLP generates a shortest word of G.

(i): We first prove that whenever we access len∗N (p) then len∗N (p) = lenN (p). First of all
note that ∀p ∈ P , len∗N (p) is only defined once for each p ∈ P , namely right before p
is pushed onto the heap. Let p1, . . . , p|P | be the order in which the productions became
productive, i. e. the order in which we define len∗N in line 8 and 23. Then for n = 1 we
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get len∗N (pn) = lenN (pn) since the first productions for which we define len∗N (see line
8) contain only terminals. Let’s assume that len∗N (pi) = lenN (pi) holds for all i ≤ n′.
The reason for defining len∗N (pn′+1) is that the last remaining non-terminal of the right-
hand side of pn′+1 becomes productive. By the definition of algorithm 6 len∗N (pn′+1) is
defined as

len∗N (pn′+1) :=

(
k∑
i=1

len∗N (pj)

)
+ countt(pn′+1).

By induction hypothesis we have ∀i ≤ n′ : len∗N (pi) = lenN (pi) and therefore we get

len∗N (pn′+1) =

(
k∑
i=1

lenN (pj)

)
+ countt(pn′+1) = lenN (pn′+1).

(ii): We finally have to prove that lenP (p1) ≤ . . . ≤ lenP (pn). For n = 1 this is true,
since the first production that we pop, is the shortest one containing only terminals.
Assume the statement holds for n′ and we pop the production pn′+1. Since the heap
is sorted all productions that are still contained in the heap have a length greater or
equal than lenP (pn′+1). The reason for pushing pn′+1 onto the heap is that the last
non-terminal Y of the right-hand side became productive i. e. pj with lhs(pj) = Y was
popped from the heap. By induction hypothesis this is the largest production pj i. e.
lenP (pl) ≤ lenP (pj) ∀l < j. Therefore, all popped productions, that were popped be-
fore pn′+1 was pushed onto the heap, are smaller than lenP (pn′+1), since lenP (pn′+1) ≥
lenP (pj) and from the induction hypothesis we get ∀l ≤ j : lenP (pl) ≤ lenP (pj). Since
the heap is sorted, the statement follows. �

Lemma 3.6.3. Let G = (∆, N, S, P ) be a context-free grammar. If L(G) 6= ∅, we can con-
struct a SLP G′ that generates the shortest word, using algorithm 6 in O(|G|+ |P | · log(|P |)).
Furthermore, if L(G)∩{ε} 6= ∅ we can construct a SLP G′ that represents a shortest non-empty
word of L(G) in O(|G|+ |P | · log(|P |)).

Proof. Since the heap is sorted by len∗P line 11 and 25 requires O(log(n)) where n is the
number of elements contained in the heap. The heap contains at most |P | elements.
Furthermore, after |P | steps the loop in line 10 ends. Consequently, alg. 6 requires
O(|G| + |P | · log(|P |)). The correctness of the set of productions follows from lemma
3.6.2.

Suppose now L(G)∩{ε} 6= ∅. We can test inO(|G|) if ε ∈ L(G). If ε /∈ L(G) we compute
the shortest word using alg. 6. Otherwise we transform G into a new grammar G′ that
is in weak Chomsky normal form with L(G′) = L(G). We can do this in O(|G|). After
that we transformG′ into a grammarG′′ that does not contain nullable production with
L(G′′) = (L(G′) \ {ε}). We especially delete the production S → ε. This requires O(|G|)
and O(|G′′|) = O(|G|) holds. Alg. 6 on G′′ computes us the shortest word of L(G′′) and
therefore the shortest non-empty word of L(G). �
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3.3. Algorithms on SLPs

In every step of the final algorithm that solves the equivalence problem of linear and
sequential tree-to-word transducers we have to deal with straight-line programs. In
this section, we describe basic algorithms to be able to check certain properties of SLPs.
More precisely, let G1, . . . , Gn be straight line programs and k ∈ N, then we require the
following operations:

(a) CONCATENATE i. e. compute ωG1 . . . ωGn ,

(b) SPLIT i. e. compute ωl and ωr with ωG1 = ωlωr,

(c) SHIFT i. e. compute ωG′ = u−1ωG1u where u is a prefix of ωG′ ,

(d) EVAL i. e. computation of ωG′ [k] where k ∈ [| val(ωG′)|],

(e) LENGTH i. e. computation of |ωG1 |,

(f) MORPH i. e. let M : ∆∗ → Γ∗ be a morphism, compute M(ωG1),

(g) DELETE i. e. let k1, k2 ∈ N, k1 < k2, k2 ≤ |ωG1 | compute ωG1 [1 . . . k1]ωG1 [k2 . . . |ωG1 |].

(h) EQUALS i. e. does ωG1 = ωG2 hold (see section 4.1)

(i) MATCHING i. e. get the positions of the kth occurrences of ωG2 in ωG1 (see sec-
tion 4.2)

Before we discuss these operations on SLPs we show that we can check for a given
context-free grammarG if the grammar is a well-defined SLP. Since a SLP can be seen as
an acyclic graph where each node of the graph represents a non-terminal of the gram-
mar, we can define a topological order relation �. If this relation is well-defined on
a context-free grammar and there exists only one production with the same left-hand
side in the set of productions, then the grammar is a well-defined SLP. We will see
that the order relation can be used to simplify the computation of some properties of a
non-terminal of the SLP.

Definition 3.7 (Topological order �). Let G = (∆, N, S, P ) be a SLP, then ∀X,Y ∈ N :
X � Y ⇐⇒ there is no occurrence of Y in any derivation starting from X .

Clearly ∀X ∈ N : X � S. To test whether a CFG is a SLP, we first check if ∀X ∈ N :
|{p ∈ P | lhs(p) = X}| ≤ 1 holds, which can be easily done in O(|P |). Then we have
to check if G is acyclic or in other words that the order relation is defined on all useful
non-terminals of G.

Lemma 3.7.1. Let G = (∆, N, S, P ) be a context-free grammar. We can test if G is a SLP in
O(|G|). Furthermore, if the topological order is defined on G, we can compute the relation � in
O(|G|) time.
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D B C B A f B 5

B E f f

A a B f B a a

Figure 3.3.: Data structure inspired by [30] with P = {D → BCBAfB,B → Eff,A →
aBfBaa}. The black arrowed lines sketch the linked list for D. The dotted
lines represents pointers of a node. The black dotted lines represents point-
ers to the counter of the non-terminal B, the blue ones represents pointers
to the production.

Proof. We construct a similar data structure, we use for the computation of NullG (see
section 3.2) but this time a node, containing X , points to the production p with lhs(p) =
X and to a counter. The counter is initialized with the number of occurrences of a
non-terminal X on the right-hand sides (see fig. 3.3). If the counter of X becomes
zero we add the production with lhs(p) = X to the end of a list L. Furthermore, for
each non-terminal in rhs(p) we decrease the corresponding counter by 1. Initially, we
can add all non-terminals to L and H , that do not occur on a right-hand side of any
production. In case of a well-defined SLP this would be at least the axiom. After this
progress terminates the order relation is defined on G if all useful non-terminals of G
are contained in the list. Note that we may delete all useless productions beforehand.
Clearly, if X comes before Y in the list then X � Y . �

Definition 3.8 (First and last terminal). Let G = (∆, N, S, P ) be a SLP representing a
word ω 6= ε andX ∈ N , then we define first(X) = val(X)[1] and last(X) = val(X)[|val(X)|].
We can define first(X) and last(X) inductively by the following properties:

p = X → s1αs2 s1 ∈ ∆

first(X) = s1

p = X → s1αs2 s2 ∈ ∆

last(X) = s2

p = X → s1αs2 s1 ∈ N
first(X) = first(s1)

p = X → s1αs2 s2 ∈ N
last(X) = last(s2)
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3. Algorithms on CFGs and SLPs

Lemma 3.8.1. Let G = (∆, N, S, P ) be a SLP. Then we can compute last(X) and first(X) for
all productive non-terminals X ∈ N in O(|G|) time.

Proof. We first compute the topological order � on G in O(|G|). We go over all non-
terminal in ascending topological order. Note that we assume that we can access a
production p for a given left-hand side in O(1). Therefore, we start with productions
p = X → ω where ω ∈ ∆∗. Thus first(X) = ω[1] and last(X) = ω[|ω|]. Since the right-
hand side of a production is stored as a linked list we can access the head and the tail of
the list in O(1). We process with the next non-terminals and whenever the head or the
tail of the right-hand side of a production is a non-terminal X we can lookup last(X)
and first(X) (see alg. 8). Since we process in topological order, it is not possible that a
non-terminal, for which we compute the last and first value, occurs in any production
of any non-terminal, for which we have computed the first and last value beforehand.
Therefore, we compute first(X) and last(X) for each productive non-terminal. �

Remark 3.9. If we already computed the topological order we can compute compute
last(X) and first(X) for all productive non-terminals X ∈ N in O(|N |) time. This
is useful if we manipulate the grammar without changing the topological order (see
chapter 4).

Definition 3.10 (Shifts of a word). Let u be a word, possibly represented by a SLP. Let
v be a prefix of u and w be a suffix of u. v−1uv is a left to right shift of u by v and wuw−1

is a right to left shift of u by w.

Definition 3.11. Let G = (∆, N, S, P ) be a SLP, then we define len(s) by

s ∈ ∆∗

len(s) = |s|
s ∈ N

len(s) = lenN (s)

s = ω0X1 . . . Xnωn ∈ (∆ ∪N)∗

len(s) =
∑n

i=0 len(ωi) +
∑n

j=1 len(Xj)

Algorithm 9 computes a SLP G′ where ωG′ is a shifted version of ωG. If the variable
leftToRight is true alg. 9 computes the left to right shift, otherwise it computes the
right to left shift.

Lemma 3.11.1. Let ωG, ωG′ be words represented by straight-line programs, k ∈ [|val(S)|] be
a natural number and µ : ∆∗ → Σ∗ be a morphism, then the following holds:

(i) We can compute |ωG| in O(|G|) time.

(ii) We can compute ωG[k] in O(|G|).

(iii) We can compute ωG′′ = µ(ωG) in O(|G| ·max{|µ(a)| | a ∈ ∆}) time.

(iv) We can compute ωG′′ = ωG[k . . . |ωG|] in O(|G|) time.

(v) We can compute ωG′′ = ωG[1 . . . k] in O(|G|) time.

(vi) We can compute ωG′′ such that ωG′′ is a shifted version of ωG, shifted by k in O(|G|).

(vii) we can compute ωG′′ = ωGωG′ in O(max{|G|, |G′|}).
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(viii) We can compute ωl and ωr such that ωl = ωG[1 . . . k] and ωr = ωG[k . . . |val(S)|] in
O(|G|).

Proof. We proof each statement one by one.

(i) For the computing the lengths of a production of the SLP we can use alg. 6. Since
there is only one production for each non-terminal we replace the sorted heap by
an unsorted heap. The complexity of O(|G|) follows.

(ii) In the first step we calculate | val(X)| ∀X ∈ N in O(|G|): We walk down the
derivation tree of val(S). We store in a number r how many non-terminals we
have to read until we reach position k. At start r = k. So suppose we read the
production X →G X1X2. If | val(X1)| < r we can skip X1 and set r to r−| val(A)|.
We proceed with the rule X2 → α. Otherwise we can skip X2 and proceed with
the ruleX1 → β. At some point we eventually reach a ruleNa → a and r becomes
0. Therefore val(S)[k] = a.

(iii) We iterate over all symbols of all productions and replace each terminal a by µ(a).
The resulting grammar can not be larger than |G| ·max{|µ(a)| | a ∈ ∆}.

(iv) We compute val(S)[k] but instead of skipping symbols we delete these symbols
from G.

(v) Symmetric to (iv).

(vi) We compute val(S)[|u|] but instead of skipping symbols we add them to lists L,R.
Whenever the generated word of a symbol is fully part of u we add these symbol
to L and whenever a symbol is fully not part of u we add this symbol to R. After
we have reached val(S)[|u|] we construct a new axiom S∗ → RL. For details see
algorithm 9. We go through O(|G|) symbols so the size of L plus the size of R
is in O(|G|). We may transform the resulting grammar into wCNF and delete all
useless productions. The size of the resulting grammar is in O(|G|).

(vii) First assume that N ∩ N ′ = ∅. Let ∆′′ = ∆ ∪ ∆′, N ′′ = N ∪ N ′ and P = P ′ ∪
P ′′ ∪ {axiom} with axiom := S′′ →G′′ SS

′, then G′′ = (∆′′, N ′′, S′′, P ′′) generates
ωGωG′ . We can construct the axiom in constant time and we can merge P into
P ′ in O(min{|P |, |P ′|}). If N ∩ N ′ 6= ∅, we can rename all non-terminals of G or
G′ beforehand. This requires O(max{|G|, |G′|}). Overall, the operations require
O(max{|G|, |G′|}+ min{|P |, |P ′|}) = O(max{|G|, |G′|}).

(viii) We first copy G. Then we use (iv) on G to construct ωl and (v) on the copy to
construct ωr.

�

Lemma 3.11.2. Let G = (∆, N, S, P ) be a SLP. Then we can compute in O(|G|) a SLP G′ in
Chomsky normal form such that L(G) = L(G′).
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Proof (sketch). The transformation is similar to the transformation of a context-free
grammar into Chomsky normal form but since there is only one production p with
lhs(p) = X for any X ∈ N the elimination of nullable productions and unit produc-
tions is easy. We divide the construction into 5 steps:

1. We introduce for each terminal a ∈ N a new fresh non-terminal Na and replace
each occurrence of a in any production by Na, furthermore we add Na →G′ a to
P ′.

2. We split right-hand sides of length at least 3 into right-hand sides of length 2 by
introducing new non-terminals, see lemma 3.4.6.

3. We eliminate all ε-productions (except for the axiom): If S is nullable we can re-
place all productions by S → ε, otherwise we can delete all nullable productions.

4. Let U be the set of non-terminals that are the left-hand sides of a unit produc-
tion. We go over the set U in topological order and thereby redefine rhs(A) :=
rhs(rhs(A)) for every A ∈ U . After that we can delete all unit productions. This
requires O(|P |) time.

5. We delete all useless productions in O(|G|) time using lemma 3.4.5. The resulting
SLP is reduced and in Chomsky normal form.

The proof for the correctness of the construction can be found in [30]. �
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Algorithm 6: GETSHORTESTWORD: Generates a SLP representing the shortest
word of a CFG.

input : G = (∆, N, S, P ) containing only useful productions;
output: SLP G = (∆, N, S, P ′) the shortest word, lenN : N → N;

1 Map← GETMAP(G);
2 P ′ ← ∅;
3 len∗P ← ∅;
4 len∗N ← ∅;
5 H ← ∅ ; // sorted heap
6 foreach p ∈ P do
7 if p = X → α ∧ α ∈ ∆∗ then
8 len∗P (p)← |α|;
9 H ← H ∪ p;

10 while H 6= ∅ do
11 p← first element contained in H ;
12 H ← H \ p;
13 if len∗N (lhs(p)) is undefined then
14 len∗N (lhs(p))← len∗P (p);
15 P ′ ← P ′ ∪ p;
16 foreach (q, counter) ∈Map[lhs(p)] do
17 counter ← (counter − 1);
18 if counter = 0 then
19 l← 0;
20 foreach X ∈ rhs(q) do
21 l← len∗N (X) + l

22 l← l+ number of terminals on rhs(q);
23 len∗P (q)← l;
24 if len∗N (lhs(q)) is undefined then
25 H ← H ∪ q;

26 G′ ← (∆, N, S, P ′);
27 return (G′, len∗N )
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Algorithm 7: TOBINARY: Transforms a CFG into a binary CFG.

input : G = (∆, N, S, P );
output: G without right-hand sides containing more than two non-terminals;

1 P ′ ← ∅;
2 foreach p = X → ω1X1 . . . Xkωk+1 ∈ P do
3 if k > 2 then
4 p← (X → ω1X1Ap,1);
5 P ′ ← P ′ ∪ p;
6 for i = 1 . . . k − 3 do
7 p← (Ap,i → Ap,i+1ωi+1Xi+1);
8 P ′ ← P ′ ∪ p;

9 p← (Ap,k−2 → ωp,k−1Xk−1ωkXkωk+1);
10 P ′ ← P ′ ∪ p;
11 N ′ ← N

⋃k−2
i=1 Ap,i

12 else
13 P ′ ← P ′ ∪ p;

14 G′ ← (∆, N ′, S, P ′);
15 return G′;

Algorithm 8: GETFIRSTLAST: Computes ∀X ∈ N(first(X), last(X)).

input : A reduced SLP G = (∆, N, S, P );
output: Computes ∀X ∈ N (first(X), last(X));

1 L→ GETTOPOLOGICALORDER(G);
2 for i = 1 . . . |L| do
3 X ← L[i];
4 p← (X → α ∈ P );
5 if α[1] ∈ ∆ then
6 first← α[1];

7 else
8 first← first(α[1]);

9 if α[|α|] ∈ ∆ then
10 last← α[|α|];
11 else
12 last← last([α[|α|]);

13 (first(X), last(X))← (first, last);

14 return the mapping X → (first(X), last(X));
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Algorithm 9: SHIFT: Computes a shifted version of ωG.

input : G = (∆, N, S, P ) with val(S) = ωG, k ∈ N, leftToRight ∈ {true, false};
output: SLP G′ representing the shifted word;

1 if k = 0 ∨ k mod | val(S)| = 0 then
2 return G;

3 else
4 k ← k mod | val(S)|;
5 if ¬leftToRight then
6 k ← | val(S)| − k;

7 let p be the production with lhs(p) = S;
8 initialize linked lists L,R,R′;
9 len← 0;

10 while k < len do
11 finished← false;
12 foreach x ∈ rhs(p) do
13 if len+ len(x) < k then
14 len← len+ len(s);
15 append x to L;

16 else if ¬finished then
17 finished← true;

// x is a non-terminal at this point.
18 let q be the production with lhs(p) = x;

19 else
20 prepend x to R;

21 append R to R′ in reverse order;
22 remove all elements form R;
23 p← q;

24 pS′ ← (S′ → R′L);
25 return G′ = (∆, N, S′, P ∪ {pS′})
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Algorithm 10: GETTOPOLOGICALLORDER: Compute the topological order on an
acyclic CFG.

input : G = (∆, N, S, P );
output: L that contains all non-terminal in topological order;

1 initialize the mapping Count;
2 L← ∅;
3 H ← ∅;
4 G′ ← GETREACHABLES(G);
5 foreach p ∈ P ′ do
6 for X ∈ rhs(p) do
7 Count[X]← Count[X] + 1;

8 foreach X ∈ N ′ do
9 if Count[X] = 0 then

10 H ← H ∪X ;
11 append X to L;

12 while H 6= ∅ do
13 X ← first element contained in H ;
14 H ← H \X ;
15 foreach p ∈ {q ∈ P | lhs(q) = X} do
16 foreach X ′ ∈ rhs(p) do
17 Count[X ′]← Count[X ′]− 1;
18 if Count[X ′] = 0 then
19 H ← H ∪X ′;
20 append X to L;

21 return L;
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Deciding whether L(G1) = L(G2) holds is a well-known undecidable problem for
context-free grammars in general.

Theorem 4.1 ([30]). The following problem is undecidable:

Input: Given CFGs G1 and G2

Output: L(G1) = L(G2)?

If we restrict ourselves to acyclic context-free grammars, the problem becomes decid-
able. However, [31] showed that the problem is NEXPTIME-COMPLETE and therefore,
there exists no efficient algorithm for solving the problem.

Theorem 4.2 ([31]). The following problem is NEXPTIME-COMPLETE:

Input: Given acyclic CFGs G1 and G2

Output: L(G1) = L(G2)?

If we add further conditions to the grammars such that the grammars are SLPs the prob-
lem can be solved efficiently. [47], [28] and [45] showed independently that there exists
a polynomial time algorithm for the equality test of two SLP-compressed words.

Theorem 4.3 ([47, 28, 45]). The following problem is in PTIME:

Input: Given two SLPs G1 and G2

Output: L(G1) = L(G2)?

[47] and [28] used combinatorial properties of words, in particular the periodicity lemma
of [46] and achieved a O(n4) running time, where n = |G1| + |G2|. Both use the
equality test of SLP-compressed words as a tool to solve another problem. [47] used
the result to develop a polynomial time algorithm for solving the morphism equality
problem for context-free languages which we will discuss in chapter 5. Two promising
approaches for solving the equivalence problem for SLP-compressed words were pub-
lished recently. Both contributions suggest to computes a single natural number which
represents a whole word.

The first approach, described in [45], contains an efficient data structure for maintaining
dynamically a family of strings. The following operations are supported:

(a) ADD(s): One can add a string s with |s| = 1 to the data structure in O(log(m)),
where m is the number of the operation.
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(b) EQUALS(s1, s2): For two given strings s1, s2, that are contained in the data struc-
ture, one can check if s1 = s2 in O(1).

(c) CONCATENATE(s1, s2): For two given strings s1, s2, that are contained in the data
structure, one can add a concatenated string s3 = s1s2 to the data structure with-
out destroying s1 and s2 in O(log(n) · (log(m) log∗(m) + log(n))) time, where m is
the number of the operation and n = |s3|.

(d) SPLIT(s3, k): For a given string that is contained in the data structure, one can
split the string into two parts without destroying the original string in O(log(n) ·
(log(m) log∗(m) + log(n))) time, where m is the number of the operation and n =
|s3|.

Since the data structure supports the CONCATENATE and SPLIT operation, the transi-
tion to SLPs is straightforward. With the mth operation, we can generate a string of
size at most 2m, therefore log(n) ≤ m. This leads to a cubic running time algorithm for
checking equality of SLP-compressed strings [41]. The approach was improved by [3].
They achieve a time complexity of O(n2 log∗(n)), where n is the size of the involved
grammars i. e. n = |G1|+ |G2| but the transition to SLPs is not straightforward [34]. The
idea behind the approach presented in [45, 3], is to compute for each string s a signa-
ture σ(s), which is a small unique number. Instead of comparing strings s1, s2, they
compare signatures σ(s1), σ(s2). The signature is computed by breaking the string s
into blocks and replace each block by a single natural number, which is computed by a
pairing function. This progress goes on until a single number σ(s), which represents s,
is computed. They ensure that the boundaries of each block are determined by a small
neighbourhood of the block [45, 3]. Suppose we concatenate s1 and s2 to get s3 = s1s2.
If s1 and s2 are already contained in the data structure, we only have to compute a
small subset of the natural numbers that are involved in the computation of σ(s3). This
advantage arises from the fact that most of the numbers are already computed, since
we already computed σ(s1) and σ(s2). Roughly spoken, at each stage of the computa-
tion we have to consider only a small neighbourhood around s3[|s1|]. In some sense we
undo the compression locally.

We decide to solve the problem by implement the second approach that was recently
published in [34]. This approach uses a technique of local recompression: In each it-
eration of the algorithm we locally decompress parts of the grammars and compress
the whole grammar afterwards. We ensure that the compression of equal sub words
results in equal signatures. This relates to [45, 3] in the sense that we also generate
some sort of unique fully-compressed representation of a whole SLP-compressed word.
However, in contrast to all other contributions, we do not consider any combinatorial
properties of the encoded words. Instead, we iteratively analyse and change the way in
which words are decried by the SLPs [34]. We wanted to work directly with SLPs with-
out using a complicated data structure. Additionally, the approach presented in [45]
requires that numbers of size O(|ωG1 |) can be manipulated in constant time, even bit
operations are required [34]. The improvement in [3] solves this problem but introduce
randomised hashing. The derandomisation approach suffer from a logarithmic factor
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[34]. Therefore we decide to implement the recompression algorithm presented in [34],
which is the best known algorithm for the SLP-compressed equality test and the fully-
compressed pattern matching if O(|ωG1 |) fits in one machine word. If this condition
does not hold the running time for the equality test is slightly worse then the running
time achieved by [3].

Theorem 4.4 ([34]). LetG1 andG2 be two SLPs and n = |G1|+ |G2|. We can decide L(G1) =
L(G2) in O(n2 log(n)) time. If O(|ωG1 |) fits in one machine word the running time decreases
to O(n2).

We additionally implemented the pattern matching for SLP-compressed words using
the approach presented in [34], which gives us the ability to test for two fully-compressed
words ω, ω′ whether ω is a prefix of ω′. In the setting of pattern matching, G1 represents
the text and G2 the pattern and we ask for the kth occurrences of ωG2 in ωG1 . There is
no known algorithm that outperforms the recompression algorithm presented in [34]
in the case of fully-compressed pattern matching. In [34] they proved the following:

Theorem 4.5 ([34]). Assuming that numbers of size M can be manipulated in constant time,
we can return anO(n+m) representation of all pattern occurrences, where n (m) is the size of
the SLP-compressed text (pattern, respectively) andM is the size of the decompressed pattern. It
runs inO((n+m) log(M)) time. If only numbers of size n+m can be manipulated in constant
time, the running time and the representation size increase by a multiplicative O(log(n+m))
factor. This representation allows calculation of the number of pattern occurrences and, if N fits
in O(1) codewords, also the position of the first/last pattern. Under the same assumption, the
position of an occurrence of an arbitrary rank can be given in O(n+m) time.

In this chapter we will study two implemented algorithms FCEQUALS and FCPMATCH-
ING which both achieve, an upper bound of O(n2 log(n)) with the restriction that num-
bers of sizeM can be manipulated in constant time. This is due to the fact that we don’t
implemented the special representation of large blocks described in [34]. We decided
to go ahead and focus on the solution of equivalence problem of STWs and LTWs. How-
ever, our approach can be easily extended to achieve the exact same time bounds.

4.1. Fully-compressed equality checking

We will explain each step of our implementation in detail and we will give complex-
ities for all involved algorithms. As already mentioned the recompression algorithm
changes the grammars during each iteration. To avoid confusion letGt = (∆, St, Nt, Pt)
be the changing grammar of the first word andGp = (∆, Sp, Np, Pp) the changing gram-
mar of the second word or, in case of pattern matching, the changing grammar of the
pattern. W. l. o. g. letNt∩Np = ∅. LetG = (∆, {St, Sp}, Nt∪Np, Pt∪Pp) be the changing
grammar representing the set of words i. e. L(G) = {ωGt , ωGp}. Note that ∆ changes
during the algorithm as well. Furthermore, let n andm be the size of original grammars
i. e. |Gt| and |Gp| before the first iteration of the algorithm.
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4. Advanced operations on compressed words

Similar to [45, 3] the goal is to compute a signature σ(Gt) and σ(Gp) and then decide
whether σ(Gt) = σ(Gp) holds. In each phase of the computation, the grammars Gt
and Gp change such that ωGt and ωGp shorten by constant factor. In some sense we
carefully refactor the grammar while storing all required informations to answer the
final question. Clearly, in case of equality checking

σ(Gt) = σ(Gp) ⇐⇒ ωGt = ωGp

has to hold in each step of the algorithm.

Definition 4.6 (Pair). Let ω be a word over an alphabet ∆. We call ab with a, b ∈ ∆ a
pair of ω if i ∈ [|ω| − 1] and ω[i] = a ∧ ω[i+ 1] = b. We call a pair a proper pair if a 6= b.
We say ab occurs at position i ∈ [|ω|] in ω if ω[i] = a ∧ ω[i+ 1] = b.

Definition 4.7 (Block). Let l > 1 and a ∈ ∆. We call al a block of length l. Let ω be a
word over an alphabet ∆. We say a block al occurs at position i in ω if i ∈ [|ω| − l] and
ω[i] = . . . = ω[i+ l] = a ∧ ω[i− 1] 6= a ∧ ω[i+ l + 1] 6= a.

Remark 4.8. ab or al is a pair or block respectively, of ω, if and only if ab or al occurs at
some position in ω.

4.1.1. The replacement schema

The replacement schema of [34] is not the same as the schema described in [45, 3]. We
compress proper pairs ab and blocks al, but without breaking the word into blocks. We
will shortly discuss the major disadvantage that arises form skipping this particular
step in section 4.3. We apply the following two basic compressions:

• Pair compression of a pair ab: We replace each occurrence of a proper pair ab in
ωG by the same fresh letter c.

• Block compression of a block al: We replace each (maximal) occurrence of a block
of length l > 1 in ωG by a fresh letter al.

From now on we write al for the replacement of al. It is essential that if we replace
a pair or a block, we replace all occurrences in ωG in a row. Otherwise the following
trivial lemma would not hold:

Lemma 4.8.1. Let ωG′t and ωGp′ obtained from ωGt and ωGp respectively, by compressing a
global pair ab or a global block al in the words then

ωGt′ = ωGp′ ⇐⇒ ωGt = ωGp .

Example 4.9 (Pair compression). Let ωGt = ωGp = ababcdabbb. After replacing ab by
e we get ωGt′ = ωGp′ = eecdebb. The compression of ab destroys pairs {bc, da} i. e.
pairs b∆ and ∆a. Therefore, we are not allowed to compress bc or da in between the
compression of ab. The same is true for b-blocks. Suppose we do not compress all
occurrences in a row. Let us compress ab in ωGt and da afterwards. In ωGp we compress
da first and ab afterwards. We would get eecdebb = ωGt′ 6= ωGp′ = eecfbbb.
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4.1. Fully-compressed equality checking

To realise the compression in-order, the recompression algorithm sorts pairs and blocks
with RADIXSORT.

Lemma 4.9.1 (Radix sort). Using RADIXSORT we can sortO(n+m) numbers of sizeO((n+
m)c) for some constant c in O(c(n+m)) time.

The recompression algorithm iteratively compresses all blocks and pairs. In each iter-
ation a letter a is compressed at most once. We call one iteration a phase of the recom-
pression. A phase starts with gathering pointers to all blocks and pairs in ωGt and ωGp .
We sort these pointers according to (a, b) (in case the pointer points to a pair ab) or ac-
cording to (a, l) (in case the pointer points to a block al). Afterwards, we replace each
occurrence of pairs and blocks in ωGt and ωGp by fresh letters (see alg. 11). Finally, we
rename letters that were not replaced by any fresh letter of the current phase.

Example 4.10 (uncompressed recompression). The following example shows how the
recompression algorithm works for uncompressed words without a renaming step for
each phase. Let ωGt = ωGp = ababacdddabdcd two uncompressed words. Alg. 11
computes in 4 phases σ(Gt) = σ(Gp) = 13:
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Luckily in each phase the symbols form an integral interval. Occurrences of pairs are
sorted according to the first component, and then to the second one. We compress them
in-order.

We use the same data structure described in chapter 3. A word is a linked list of GSym-
bols. For the recompression algorithm we have to store some additional informations.
Therefore, we extend the GSymbol to JezSymbol.

Definition 4.11 (JezSymbol). A JezSymbol is a quadruple symbol = (id, phase, len,
weight) ∈ N× N× N× N. The parameters have the following meaning:

• id: The unique number of a symbol of a phase

• phase: The phase in which this symbol was created
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4. Advanced operations on compressed words

Algorithm 11: FCEQUALS: Checks whether two words are equal.

input : G with L(G) = {ωGt , ωGp};
output: true if ωGt = ωGp , otherwise false;

1 if |ωGp | 6= |ωGt | then
2 return false;

3 FIRSTRENAME(G);
4 while |ωGp | > 1 do
5 COMPRESSBLOCKS(G);
6 Pairs← GETPAIRS(G);
7 COMPRESSPAIRS(Pairs, true);
8 RENAME(G);

9 return ωGt = ωGp ;

• len: The length of the symbol a, e. g. if the length of a symbol a is greater than
1, the symbol a = (ida, phasea, lena, weighta) represents a block of symbols b =
(ida, phasea, 1, weighta)

• weight: The length of the fully uncompressed version of the symbol i. e. the weight
of all symbols at the beginning of the algorithm is equal to 1. Weights became
important if we calculate the position of the occurrence of a pattern in ωGt (see
section 4.2).

Remark 4.12 (Grammar position). Let � be a topological order on G. We can ensure
that such a order exists and we can compute in O(n + m) time a list L, containing
non-terminals in topological order by using algorithm 10.

Definition 4.13 (Grammar position). Let’s say we have X1 � . . . � X|N |. We notate
G[i] as the occurring symbol at (rhs(X1) . . . rhs(X|N |))[i].

We assume that all letters are numbered from an input alphabet ∆ = [|G|c]0 for some
constant c. Before we start the recompression we rename all letters in G such that each
letter is in [|G|]0.

Theorem 4.14. Let ωGt and ωGp be two uncompressed words. We can decide in O(n + m),
whether ωGt = ωGp holds by using the recompression technique.

Proof. Note that in this case O(n+m) = O(|ωGt |+ |ωGp |) at the beginning of the algo-
rithm. First of all, we replace each letter in ωGt and ωGp by an appropriated JezSymbol
(see alg. 12). Since all ids of symbols are in [|G|c] = [(n + m)c] for some constant c, we
can gather and sort all pointers inO(n+m) by going over the words. Since we rename
all occurrences of letters in-order we require no dictionary operations. After line 3 in
algorithm 11, each id of any symbol is in [n+m]0.

In the same way we gathered all pointers to all letters in ωGt and ωGp , we can gather
pointers to all occurrences of blocks and pairs in ωGt and ωGp . Note that pointers always
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4.1. Fully-compressed equality checking

Algorithm 12: FIRSTRENAME: Renames all letters in G.

input : G with L(G) = {ωGt , ωGp};
1 initialize the list Pointers;
2 for i = 1 . . . |G| do
3 if G[i] is a terminal then
4 create new pointer x∗ to G[i];
5 append x∗ to Pointers;

6 Pointers← RADIXSORT(Pointers);
7 count← −1;
8 for i = 1 . . . |Pointers| do
9 if i = 1 ∨ Pointers[i− 1] 6= Pointers[i] then

10 count← count+ 1;

11 replace the letter at Pointer[i] by a (count, 0, 1, 1);

point to the left most element of a pair or block, respectively. A pair is represented by
a triple (a, b, x∗), where a, b are JezSymbols and x∗ points to a. A block is represented
by a triple (a, l, x∗), where a is a JezSymbol, l is the length of the block and x∗ points
to the left most symbol of the block. We sort these triples with respect to their first two
components using RADIXSORT. We can do this in O(n + m) time. We can now assign
a fresh id to all equal pair or block occurrences in parallel by iterating over the list of
sorted pointers without any dictionary operations by starting with id = 0. Furthermore,
we can compute the new phase, length and weight of the JezSymbol as follows:

• compression of a pair ab by c: c = (id, phasea + 1, 1, weighta + weightb)

• compression of a block al by al: al = (id, phasea + 1, 1, weighta · l)

We can do this for all pointers in overall O(n + m). It may happen that a pointer x∗

points no longer to a pair, since some part of the pair was already compressed. We can
check this for a pair by comparing the symbol at x∗ with a and the symbol at x∗+1 with
b in constant time. If the pair disappeared, we do nothing. Since we compress blocks
before pairs, blocks will never disappear before compressing them.

After the block and pair compression, we rename all symbols of phase equal to the
number of the last phase i. e. all uncompressed symbols. We gather all pointers to those
symbols in O(n + m) time by going over ωGt and ωGp again. We sort all pointers in
O(n + m) time by the id of the symbol they are pointing at, using RADIXSORT. We
apply algorithm 12 but we start with count equal to the largest id of fresh symbols.
After the renaming, each symbol can be identified by an id ∈ [n+m]0.

We now have to prove that we shorten the words by a constant factor: Let us look at the
beginning of an arbitrary phase of algorithm 11 and a sub word ω of ωGt with |ω| = 2.
Clearly, if ω is part of a block, it will be replaced by a single letter. Let’s assume ω is a
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4. Advanced operations on compressed words

proper pair ab. Suppose a won’t be compressed by the current phase, then b has to be
compressed at the end of the phase, otherwise the pair ab occurs in ωGt after the phase,
which is, by the definition of algorithm 11, not possible. In any case, one of the letter of
ω is compressed after the phase.

Let us assume a letter u is not compressed after the phase. Then by the argument
above, the two letters to the right of u are compressed (if u is not the last letter of ωGt).
Therefore, for each uncompressed letter u (expect for the last one letter of ωGt) we get
two compressed letters to the right i. e.

mu − 1 ≤ 2 ·mc,

where mu is the number of uncompressed and mc is the number of compressed letters
of ωGt . From this we get

mu − 1 ≤ 2 ·mc ⇐⇒ mu +mc − 1 ≤ 3mc ⇐⇒ |ωGt | − 1 ≤ 3mc ⇐⇒
|ωGt | − 1

3
≤ mc.

At least each compressed two letter of ωGt are replaced by one single fresh letter and
thus the length |ωGt′ | of the new text ωGt′ can be bounded by

|ωGt′ | ≤ |ωGt | −
|ωGt | − 1

3
⇐⇒ |ωGt′ | ≤

2|ωGt |+ 1

3
.

Therefore, ωGt shorten by a constant factor - the proof for ωGp is similar. Thus, algo-
rithm 11 terminates after a constant number of iterations if ωGt and ωGp are uncom-
pressed. Since the running time of a single phase is linear, the theorem follows. �

Example 4.15. The same situation as described in example 4.10 but with a renaming
step in each phase. We guarantee that after each phase the set of ids is in [|∆|]0.

4.1.2. The local decompression

In the setting of compressed words, ωGt and ωGp are represented by SLPs Gt, Gp and
therefore, |Gt| 6= |ωGt | possibly holds. Gathering and compressing pairs or blocks seems
difficult, since they can be distributed over different productions of the grammar.

Example 4.16 (Distributed pairs and blocks). Let Gt = (∆, N, S, P ) with P = {S →
aX1X1bX3, X1 → ba,X3 → bbbX4, X4 → bbab}. We have ωGt = abababbbbbab, pairs
{ab, ba} and one block {bbbbb}. Some pairs are distributed over two productions. The
block is distributed over three productions.

We introduce the second important property of the recompression algorithm: local
modification of the grammars Gt and Gp such that we can apply the compression of
words and blocks. In particular, we will decompress the grammar locally [34].
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Figure 4.1.: Equality checking by using the recompression technique. Each number rep-
resents the id of a corresponding JezSymbol. Pairs ab are sorted according
to the first component a and then to the second one.

Without loss of generality we assume that the grammar G is in Chomsky normal form
without any useless or nullable non-terminals. We can ensure this by rename all non-
terminals beforehand and apply lemma 3.11.2 to transform the grammars into CNF in
linear time. As already mentioned in remark 4.12 let Xi � Xj ⇐⇒ i ≤ j.

Definition 4.17 ((Non-)crossing pairs [34]). Consider a pair ab and its fixed occurrence
in val(Xi), where the production for Xi is Xi → α1Xjα2Xkα3 (or Xi → α1Xjα2 or
Xi → α1). We say that this occurrence is

1. explicit for Xi if this ab comes from α1, α2 or α3

2. implicit for Xi if this occurrence comes from val(Xj) or val(Xk) and

3. crossing for Xi otherwise.

A pair ab is crossing if it has a crossing occurrence for anyXi, otherwise it is non-crossing.

Remark 4.18. If ab occurs implicit for Xi it has to be crossing or explicit for some other
non-terminal.

Lemma 4.18.1. A pair ab is crossing if and only if one of the following conditions hold:

(i) aXi occurs in some production and first(Xi) = b

(ii) Xib occurs in some production and last(Xi) = a

(iii) XiXj occurs in some production last(Xi) = a and first(Xj) = b

Example 4.19 (Explicit, implicit and crossing occurrences). If we look back to example
4.16 at the production S → aX1X1bX3 we can identify ab as a crossing pair since there
is a crossing occurrence for S: last(a) = a and first(X1) = b. Furthermore, there is an
explicit occurrence of ab for X4 and an implicit occurrence of ab for X3.
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4. Advanced operations on compressed words

Definition 4.20 ((Non-)crossing blocks [34]). Consider a letter a and an occurrence al

in val(Xi), where the production for Xi is Xi → α1Xjα2Xkα3 (or Xi → α1Xjα2 or
Xi → α1). We say that this occurrence is

1. explicit for Xi if this al comes from α1, α2 or α3

2. implicit for Xi if this occurrence comes from val(Xj) or val(Xk) and

3. crossing for Xi otherwise.

A letter a has a crossing block of length l if al has a crossing occurrence for any Xi, other-
wise it has no crossing blocks.

Lemma 4.20.1 ([34]). Let ab (al) be a non-crossing pair (a non-crossing block). Let Gt′ , Gp′ be
the grammars constructed by replacing each explicit occurrence ab (al) by a fresh letter c (al),
in Gt and Gp receptively, then

ωGt = ωGp ⇐⇒ ωGt′ = ωGp′

holds.

4.1.3. Compression of non-crossing pairs

Lemma 4.20.2. We can compress all non-crossing pairs in O(|G|) time by applying algorithm
13 and 14 i. e. COMPRESSPAIRS(GETPAIRS(G), false).

Proof. We go over all right-hand sides of G. whenever we spot an explicit pair ab, we
append (a, b, crossing, x∗) to the list Pairs of pairs. crossing is a flag that indicates that
the entry represents an occurrence of a non-crossing (crossing = 1) or an occurrence of
a crossing (crossing = 0) pair. Lemma 4.18.1 gives us an algorithm for computing all
crossing pairs:

We can compute first(X) and last(X) for all non-terminals in G in O(n + m) time in
a bottom up fashion by using alg. 8. By using last(X),first(X) while scanning G for
non-crossing pairs, we can simultaneously spot all crossing pairs see algorithm 13 e. g.
if we spot aX at some position we add the pair (a,first(X), 0, x∗) to the list of pairs if
first(X) 6= a.

For all crossing occurrences of pairs we set crossing to 0. Then we sort all spotted pairs
using RADIXSORT with respect to the first 3 components. By lemma 4.26.3 the size of
∆ is in O((n + m)3), and RADIXSORT sorts the entries in Pairs in O(|G| + n + m) =
O(|G|) time. Since Pairs is sorted according to crossing, we can easily identify crossing
and non-crossing pairs. There are only O(|G|) entries in Pairs. We can introduce a
fresh letter for each non-crossing pair in constant time. Whenever we introduce a fresh
letter we will never require to lookup any letters introduced before, since the entries
are sorted according to ab.
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4.1. Fully-compressed equality checking

We can replace all explicit pairs ab in constant time since we have pointers x∗ to their
occurrence (see alg 14). Thus, each iteration step requires O(1) time and algorithm 14
compresses all non-crossing pairs in O(|G|) time. �

Algorithm 13: GETPAIRS: Returns a unsorted list of all pairs in G.

input : compressed represented by G = (∆, N, {St, Sp}, P );
output: pointers to all proper crossing and non-crossing pairs of G;

1 compute ∀X (last(X),first(X)) using GETFIRSTLAST(G);
2 initialize the list Pairs;
3 foreach q ∈ P do
4 r ← rhs(q);
5 for i = 1 . . . | rhs(q)− 1| do
6 x∗ ← undefined;
7 crossing ← 0;
8 if r[i] ∈ ∆ ∧ r[i+ 1] ∈ ∆ then
9 x∗ ← pointer to r[i];

10 a← r[i];
11 b← r[i+ 1];
12 crossing ← 1;

13 else if r[i] ∈ ∆ ∧ r[i+ 1] ∈ N then
14 a← r[i];
15 b← first(r[i+ 1]);

16 else if r[i] ∈ N ∧ r[i+ 1] ∈ ∆ then
17 a← first(r[i]);
18 b← r[i+ 1];

19 else if r[i] ∈ N ∧ r[i+ 1] ∈ N then
20 a← last(r[i]);
21 b← first(r[i+ 1]);

22 if a 6= b then
23 append (a, b, crossing, x∗) to Pairs

24 return Pairs;

4.1.4. Compression of crossing pairs

From lemma 4.20.1 we derive a strategy, for reducing the problem of the compression
of crossing pairs and blocks to the uncrossed case. If we want to compress a crossing
pair ab or a crossing block al we first uncross the pair or the block, respectively, and
compress it afterwards. Uncrossing increases the size of the grammar, since we intro-
duce new symbols to a production and can therefore be seen as a decompression of the
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SLP-compressed word. We will see that the size of the grammar does not increase too
much and that we decrease the size of the fully uncompressed words at the end of a
phase due to the recompression.

Algorithm 14: COMPRESSPAIRS: Compresses uncrossed or all pairs in Pairs.

input : pairs Pairs, all ∈ {true, false};
1 Pairs← RADIXSORT(Pairs);
2 initial list CrossingPairs
3 while Pairs 6= ∅ do
4 entry ← (a, b, crossing, x∗) ∈ Pairs;
5 remove entry from Pairs;
6 if 6= crossing then
7 a′ ← a;
8 b′ ← b;
9 c← fresh symbol;

10 foreach entry ← (a′, b′, crossing, x∗) ∈ Pairs with a = a′ ∧ b = b′ do
11 if ab is still at x∗ then
12 replace ab by c at x∗;

13 remove entry from Pairs;

14 else
15 foreach entry ← (a′, b′, crossing, x∗) ∈ Pairs with a = a′ ∧ b = b′ do
16 remove entry from Pairs;

17 append entry to CrossingPairs;

18 if all then
19 COMPRESSALLCROSSINGPAIRS(CrossingPairs);

Let ab an occurrence of a crossing pair. We know ab is crossing due to (i), (ii) or (iii) of
lemma 4.18.1. In case (i) we can uncross a pair by replacing all occurrences of aXi by
abXi, then we delete b from val(Xi). We call this a left-pop of b [34]. (ii) is symmetric, i. e.
we right-pop a. In case (iii) we replace all occurrences of XiXj by XiabXj and delete the
last letter (a) from val(Xi) and the first letter (b) from val(Xj) i. e. left-pop a and right-
pop b. In fact it is not necessary for left-popping b that val(Xi) starts with a. For the pop
operation, we have to get access to all occurrences of a non-terminal in constant time.
The following lemma gives us this ability.

Lemma 4.20.3. We can construct a mapping Occ that maps each non-terminal X ∈ N to a
list of pointers LX such that: For every occurrence ofX on right-hand sides, there is exactly one
pointer in LX , pointing to that occurrence of X . We can construct Occ in in O(n+m) time.

Proof. We go over all right-hand sides and whenever we spot a non-terminal X we
add a pointer to the list LX . We can identify this list, create the pointer and append
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the pointer to the list in constant time. We have to do this only once before we start the
algorithm. Therefore, we can create all lists in overall O(n+m) time. �

Lemma 4.20.4. Let ∆ be the actual terminal alphabet and ∆l,∆r ⊆ ∆ with ∆r ∩ ∆l = ∅.
After we left-pop all b ∈ ∆r and right-pop a ∈ ∆l simultaneously, no pair ab ∈ ∆l∆r, is
crossing. Furthermore, ωGt and ωGp have not changed.

Proof (sketch). Let us look at non-terminal X with a crossing occurrence for ab before
we left-pop b and right-pop a. This is due to one of the three cases in lemma 4.18.1 i. e.
there is an occurrence of aY where first(Y ) = b or Y b where last(Y ) = a or Y Z where
last(Y ) = a,first(Z) = b. After applying left-pop b and right-pop a this occurrence is
surely uncrossed. Since a 6∈ ∆r and b /∈ ∆l we will never right-pop b or left-pop a. Thus
only way the occurrence ab became crossed again is that, at some point, we right-pop
a or left-pop b. However, the condition is that first(X) = b or last(X) = a which is not
possible since a occurs before b. �

Algorithm 15: POP: Right-pop ∆l and left-pop ∆r.

input : ∆l,∆r, P1, . . . Pi;
1 foreach X ∈ N \ {St, Sp} in topological order do
2 let X ← α ∈ P and α[1] = b;
3 if b ∈ ∆r then
4 remove leading b from α;
5 replace X in productions of G by bX ;
6 if we replaced cX by cbX with c 6= b and cb is contains no new fresh

letter then
7 let i be the index of cb;
8 append (c, b, false, x∗) to Pi, where x∗ points to c;

9 let a be the last letter of α;
10 if a ∈ ∆l then
11 remove ending a from α;
12 replace X in productions of G by Xa;
13 if we replaced Xc by Xac with c 6= b and ac is contains no new fresh

letter then
14 let i be the index of ac;
15 append (a, c, false, x∗) to Pi, where x∗ points to a;

16 if α = ε then
17 remove X from t or p;

18 return Pairs;

Lemma 4.20.5. Algorithm 15 implements the left-pop of ∆r and the right-pop of ∆l in O(n+
m). It introduces at most 4(n+m) fresh letters to the grammars. Furthermore, it returns a list
of pointers pointing to all uncrossed pairs.
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Remark 4.21. If we consecutively apply POP(∆l,1,∆r,1) and POP(∆l,2,∆r,2) without
compressing blocks in ∆l,1∆r,1 in between, we may create a crossing block ab ∈ ∆l,1∆r,1

during the second POP. Therefore, we have to compress blocks in ∆l,1∆r,1 right after
calling POP(∆l,1,∆r,1).

Naively, we could apply POP({a}, {b}) for each crossing pair ab separately. However,
this would result in a running time of O((n + m)2) since there are O(n + m) crossing
pairs in G. In [34] two strategies are presented:

• Partition ∆ into O(log(n+m)) partitions such that after applying POP and COM-
PRESSPAIRS O(log(n+m)) times, all crossing pairs are compressed.

• Partition ∆ into O(1) partitions, containing those crossing pairs with high oc-
currence such that after applying POP and COMPRESSPAIRS O(1) times, enough
crossing pairs are compressed.

Compression of all crossing pairs

After each phase of the recompression ∆ = [|∆|]0 due to the renaming. For a 6= b, a, b ∈
∆ their binary representation differ at some position k where k ∈ [1; log(d|∆|e). Let us
build for i = 1, . . . , dlog(∆)e partitions

• ∆2i−1
l = ∆2i

r consisting of elements of ∆ that have a 0 at the i-th position in the
binary notation and

• ∆2i−1
r = ∆2i

l consisting of elements of ∆ that have a 1 at the i-th position in the
binary notation [34].

Clearly

∆ =

dlog(|∆|)e⋃
j=1

∆j
l =

dlog(|∆|)e⋃
j=1

∆j
r ∧ ∀j ∈ [dlog(|∆|)e] : ∆j

l ∩∆j
r = ∅

holds. Furthermore, we can use standard bit operations to calculate the first position
on which a and b differ in constant time and therefore the index j of their partition.

Lemma 4.21.1. We can uncross all crossing pairs using O(log(|∆|)) consecutive calls of POP

and COMPRESSPAIRS by partition the alphabet ∆ of a phase into log(|∆|) different partitions
(see alg, 16).

Proof. The statement follows directly from lemma 4.20.2, 4.20.4 and 4.20.5 and the cor-
rectness of the construction of the partitions ∆l,∆r. �

Lemma 4.21.2. We can compress all pairs by using GETPAIRS (alg. 13), COMPRESSPAIRS

(alg. 14) and COMPRESSALLCROSSINGPAIRS (algorithm 16) by calling

COMPRESSPAIRS(GETPAIRS(G), true).

The running time of algorithm is in O((n+m) · log(n+m) + |G|).
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4.1. Fully-compressed equality checking

Algorithm 16: COMPRESSALLCROSSINGPAIRS: Compresses all crossing pairs.

input : Pairs crossing pairs;
1 partition Pairs into groups P1, P2, . . . , Pi with i ∈ [dlog(∆)e];
2 for j ← 1 . . . 2i do
3 POP(∆j

l ,∆
j
r, P1, . . . , Pi);

4 COMPRESSPAIRS(Pj , false);

Proof. Note that we compress crossing pairs after non-compressing pairs. By lemma
4.20.2 the compression of non-crossing pairs takes O(|G|).

After that, Pairs contains an entry for each explicit occurrence of a crossing pair ab.
We sort entries (a, b, crossing, x∗) in Pairs by using RADIXSORT with respect to the
first three components, where crossing = 1 if x∗ points to the occurrence of an explicit
pair, otherwise, crossing is equal to 0. Note that after the compression of non-crossing
pairs no more non-crossing pairs are contained in Pairs. Furthermore, Pairs contains
exactly one entry for each crossing pair that occurs only crossing.

COMPRESSCROSSINGPAIRS partitions Pairs into P1, . . . , Pi. If we uncross any pair ab
during POP(Pj) and both, a and b are letters from the last phase, we put ab into the
partition defined by the binary representation of a and b (see line 8 and 15). We can
do this in O(1) time since we have pointers to the pair and we can compute the correct
partition number inO(1) time. Note that by our renaming schema and by the definition
of a JezSymbol we can test whether a letter is a letter introduced during the current
phase O(1) time.

Since we add pairs to Pj during POP(Pi) where i has not to be equals j, Pj becomes
unsorted. Note that i ≥ j since all other pairs are already uncrossed and compressed.
Therefore, we have to sort Pj before the compression starts. By the same arguments
stated in lemma 4.20.2 both, the sorting and the compression, can be done in O(|Pj | +
n+m) time. So the overall running time of the compression of crossed pairs is

2dlog(|∆|)e∑
j=1

c (|Pj |+ n+m) = 2c (n+m) dlog(|∆|)e+ c

2dlog(|∆|)e∑
j=1

|Pj |

*
= O((n+m) log(n+m)) + c

2dlog(|∆|)e∑
j=1

|Pj | ,

(*) follows from lemma 4.26.3. We now have to bound the size of Pj . Note that it may
even happen that we have two entries in Pj pointing to the same pair occurrence.

There are at most O(|G|) explicit occurrences of crossing pairs and 4(n + m) crossing
occurrences of crossing pairs before the loop in alg. 16 (each non-terminal can only be
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4. Advanced operations on compressed words

part of at most 4 crossing pairs and at each position of a right-hand side there can only
begin one explicit pair). Therefore, we get

2dlog(|∆|)e∑
j=1

|Pj | ≤ 4(n+m) + |G|

before the loop. However, each POP can introduce new explicit pairs, but at most 2 for
each non-terminal in G. Therefore, we can bound the sum of all partitions by

2dlog(|∆|)e∑
j=1

|Pj | ≤ 4(n+m) + |G|+ 2dlog(|∆|)e *
= O(|G|+ (n+m) log(n+m)),

(*) follows from lemma 4.26.3. Therefore, the total running time is inO((n+m) log(n+
m) + |G|). Furthermore, overallO(log(n+m)) pairs were introduced into a production
since for each POP, O(1) pairs were introduced into a production. �

Compression of enough crossing pairs

Suppose we divide ∆ into ∆l,∆r randomly, where each letter a in ∆ is assigned with
probability 1/2 to ∆l or ∆r. Then, for a fixed pair ab, ab ∈ ∆l∆r∪∆r∆l with probability
of 1/2. In [34] a deterministic construction of a partition ∆l,∆r, where ∆l∆r ∪ ∆r∆l

covers at least half of the occurrences of crossing pairs, is presented by using a simple
derandomisation approach. Since we construct a partition ∆l,∆r such that ∆l∆r∪∆r∆l

covers one half of all occurrences of crossing pairs, we get by the pigeon-hole principle
that ∆l∆r or ∆r∆l covers 1/4 of all occurrences of crossing pairs. To construct such a
partition we count the number of occurrences of a crossing pair ab in ωGt and ωGp and
assign a or b to ∆l and ∆r respectively or vice versa, based on the number of occurrences
such that at least 1/2 of all crossing pairs are covered by ∆l∆r ∪∆r∆l. Since there may
exists exponential many occurrences of a fixed pair ab in the words generated by G, it
is necessary, for complexity reasons, to manipulate integral numbers in [|ωGt |+ |ωGp |]0,
by using basic operations, in constant time. Therefore, |ωGt | + |ωGp | should fit in O(1)
machine word. Note that the number of occurrences of a pair is in O(|ωGt |+ |ωGp |).

Definition 4.22 (Occurrence of non-terminals). Let G = (∆, S,N, P ) be a SLP. We call
the occurrence occ(X) of a non-terminal X ∈ N the amount of subwords s = val(X) it
generates in val(S).

Lemma 4.22.1. Let G = (∆, S,N, P ) be a SLP in weak Chomsky normal form. We can com-
pute the mapping occ : N → N in O(|G|).

Proof. First of all, we go over all productions q in P . We create a linked list LX for
each non-terminal in N . Whenever we spot a non-terminal X on the right-hand side of
q, we add lhs(q) to the list of X . Clearly, this gives us for each non-terminal X ∈ N a
list of non-terminals that has a production in which X occurs. Note that there maybe
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4.1. Fully-compressed equality checking

duplicated non-terminals in the list e. g. ifX occurs in the rule of Y multiple times. This
construction takes O(|G|) time. We can define occ(X) inductively by

occ(X) :=
∑
Xi∈N

occ(Xi) · number of times X occurs in the q ∈ P with lhs(q) = Xi.

Therefore, we compute occ(X) by going over all X ∈ N in descending topological
order. We start by occ(St) = occ(Sp) = 1. Suppose now we have calculated occ(Xi) for
all i ∈ [n] in descending topological order i. e. ∀Xi, i ∈ [n] withX1 � . . . � Xn. Suppose
we compute occ(Xn+1) with Xn � Xn+1. None of the subwords val(Xi) occurs in
val(Xn+1). Therefore, we can compute occ(Xn+1) since all values occ(Xi) for i < n+ 1
are already defined. With the constructed list LXn+1 , this can be done in constant time
since the grammar is in weak Chomsky normal form and therefore, LX contains at most
2 elements. �

Remark 4.23. During the recompression we may delete non-terminals from the gram-
mar, since they become nullable (see alg. 15). This does not effect the computation of
occ(X), since we will never require occ(X) after deleting X . Additionally, if we delete
X , all Xi, that generate a sub word in val(X), will be deleted as well.

Lemma 4.23.1. We can compute the number of occurrences of all crossing pairs in O(|G|)
time.

Proof. By lemma 4.22.1 we can compute occ(X) ∀X ∈ N in O(|G|) time. We have
already shown that we can compute a list of pointers Pairs that contains for each oc-
currence of a crossing pair ab an entry. At the time we define this entry, we can access
the left-hand side X of the production in which the pair of the entry occurs. Therefore,
we can add the additional information occ(X) to each entry in the list without changing
the running time. Note that occ(X) of an entry is equal to the number of occurrences in
val(St) (val(Sp)) of this pair ab occurring in G. The computation and the sorting of this
list (according to the pairs) can be done in O(|G|) time. In the next step we go over the
whole list and sum up the number of occurrences occab of a crossing pair ab in O(|G|)
time. �

Lemma 4.23.2. Algorithm 17 computes a partition ∆l,∆r of ∆ such that the occurrence of at
least 1/4 of all crossing pairs in ωGt and ωGp is covered by ∆l∆r.

Proof. We prove the following. After each iteration step ∆l∆r ∪ ∆r∆l covers 1/2 of
(∆l ∪∆r)

2. At the end of the algorithm ∆l ∪∆r = L and each crossing pair is covered
by L2. By the pigeon-hole principle ∆l∆r or ∆r∆l covers at least 1/4 of the pairs.

Let n be the number of the iteration. For n = 0 the statement holds since ∆l = ∆r = ∅.
Let’s assume the statement hold for nth iteration. Therefore, ∆l∆r ∪∆r∆l covers 1/2 of
(∆l ∪∆r)

2 at the beginning of iteration n+ 1. We get

(∆l ∪∆r ∪ {a})2 = (∆l ∪∆r)
2 ∪ (∆r × {a}) ∪ (∆l × {a}) ∪ ({a} ×∆r) ∪ ({a} ×∆l)

= (∆l ∪∆r)
2 ∪ Tl ∪ Tr with Tl ∩ Tr = ∅ ∧ (∆l ∪∆r)

2 ∩ (Tl ∪ Tr) = ∅
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4. Advanced operations on compressed words

Algorithm 17: GREEDYPAIRS: Computes a partition of crossing pairs that covers
at least 1/4 of all occurrences of all crossing pairs.

input : Pairs;
output: ∆l,∆r;

1 L← set of letters that are components of a crossing pair in Pairs;
2 ∆l ← ∆r ← ∅;
3 for a ∈ L do
4 Let Tall ← (∆l ∪∆r ∪ {a})2;
5 Let Tl ← ({a} ×∆r) ∪ (∆r × {a});
6 Let Tr ← (∆l × {a}) ∪ ({a} ×∆l);
7 if Tl covers more pairs from Tall then
8 ∆l ← ∆l ∪ {a};
9 else

10 ∆r ← ∆r ∪ {a};

11 if (∆l∆r) covers more crossing pairs than ∆r∆l then
12 return (∆l,∆r);

13 else
14 return (∆r,∆l);

By induction hypothesis we already cover at least 1/2 of all occurrences of pairs in
(∆l ∪∆r)

2. We have to cover 1/2 of the pairs in Tl ∪ Tr. Algorithm 17 picks the set that
covers the most pairs (see line 7). Since their are only two of them it follows (by the
pigeon-hole principle), that we cover at least 1/2 of the pairs in (∆l ∪∆r ∪ {a})2. �

Algorithm 17 gives the idea how the partition is created but we require an effective
implementation. Our implementation is similar to the described implementation in
[34]. Instead of deciding which set covers more pairs we decide which choice destroys
more covers, then we choose the better one. The result is identical.

We create a table right such that right(a) = {(b, kab) | ab is a crossing pair} and left(a) =
{(b, kba) | ba is a crossing pair}, where kab is the number of occurrence of ab. Note that
we ensure that ∆ = [|∆|] and therefore, we can use a simple array of size |∆| to realize
the tables. Furthermore, we can orginize ∆l and ∆r as BitSets. By lemma 4.23.1 we can
compute all tuples in O(|G|) time and therefore, we can construct the tables in O(|G|)
time. Another ingredient is the array countl and countr. countl[a] gives us the number
of occurrences of pairs we do not cover if we add a to ∆l. The meaning of countr is
similar. At the beginning of the algorithm ∀a ∈ ∆countl[a] = countr[a] = 0.

Suppose at some iteration of algorithm 17 we have to deal with a. We replace line 7
in alg. 17 by a comparison of countl[a] and countr[a]. We assign a to ∆l if countl[a] ≤
countr[a] otherwise we assign a to ∆r. Suppose we add a to ∆l. If we look at an
arbitrary letter b countr[b] does not change since if we add b to ∆r we would cover ab
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4.1. Fully-compressed equality checking

and ba. However, countl[b] changes, since a will for sure not be contained in ∆r. If we
assign b to ∆l we ’lose’ all pairs ab and ba. Therefore, we increase countl[b] by kab + kba.
We can do this by using the tables. While we update countl[b] we can delete all table
entries containing tubles (x, kab) or (x, kba) since we will never require them again. We
can access one table entry in O(1) time and there are no more than O(|G|) table entries,
since there are no more crossing pairs. Since we use BitSets we can assume that we can
check a ∈ ∆l and we can compute ∆l∪{a} inO(1) time. Line 11 in algorithm 7 requires
O(|G|) time. We just go over all the number of all occurrences of all pairs ab and sum
up all kab with ab ∈ ∆l∆r and kab ab ∈ ∆r∆l. Therefore, we require that |ωGt | + |ωGp |
fits in O(1) machine word.

Lemma 4.23.3. In O(|G| + n + m) time we can find a partition of ∆ into ∆l,∆r such that
1/4 of all occurrences of crossing pairs in Gt and Gp are covered by this partition.

Proof. We refer to the construction above and to [34]. �

Algorithm 18: COMPRESSGREEDYCROSSINGPAIRS: Compresses enough cross-
ing pairs.

input : Pairs crossing pairs;
1 (∆l,∆r)← GREEDYPAIRS(Pairs) ; // considering occurrences in
ωGt , ωGp

2 (∆′l,∆
′
r)← GREEDYPAIRS(Pairs) ; // considering occurrences in G

3 POP(∆l,∆r, Pairs);
4 COMPRESSPAIRS(Pj , false);
5 POP(∆′l,∆

′
r, Pairs);

6 COMPRESSPAIRS(Pj , false);

Lemma 4.23.4 ([34]). By using the modified version of compressing pairs, the recompression
algorithm keeps the size of the grammarsO(n+m) and has still onlyO(log(M)) phases, where
M = min{|ωGt |, |ωGp |}

Proof. The recompression algorithm works if we replace COMPRESSALLCROSSING-
PAIRS by COMPRESSGREEDYCROSSINGPAIRS additionally, we have to adapt the way
we add pair entries to different lists. Instead of choosing a specific partition (see line 8
and 15 in alg. 15) we just add each entry to the same list i. e. to Pairs.

Let’s prove the the upper bound of the number of phases. Let us look at a pair ab. If
a = b the pair will be compressed, since we do not change the block compression. If
a 6= b and ab is not crossing we can use the analysis of theorem 4.14. So let’s assume
a 6= b and ab is a crossing pair. If we look at all occurrences of all crossing pairs, we
guarantee by lemma 4.23.2 that 1/4 of these occurrences are compressed. By using the
same argument that we use in theorem 4.14, 1/8 of letters of these occurrences crossing
pairs are compressed and consequently, the words shorten by at least 1/16 i. e. by a
constant factor. It follows that the recompression algorithm, still has only O(log(M))
phases, however with a large constant factor. �
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Remark 4.24. We showed that we can find a partition Σl,Σr and still shorten the fully
decompressed words by a constant factor. However, this does not mean that we also
shortenG enough and we want to keep the size of the grammar as small as possible (see
lemma 4.26.3). Therefore, we construct Σ′l,Σ

′
r in the same way but based on occurrences

of pairs inG i. e. all ki = 1. After compressing pairs ΣlΣr, we compress Σ′lΣ
′
r in addition

(see algorithm 18).

4.1.5. Block compression

In case of pairs we have to deal with the fact that if we left-pop a, we may create a new
crossing pair ab.

Example 4.25. Let G = (∆, N, S, P ) with P = {S → cXc,X → abb}. If we left-pop a
we get P ′ = {S → caXc→ bb}, aX occurs in S and val(X)[1] = b, thus we create a new
crossing pair ab.

This changes if we uncross blocks. Instead of popping a single letter we pop a maximal
a-prefix or b-suffix respectively. Suppose alX occurs in a production and val(X) starts
with ar i. e. there is a crossing a-block. If we left-pop ar by changing alX to alarX
and removing ar from val(X) it is impossible to create a new crossing block. Maybe
the block is still crossing since there could be productions Y → alarX and Z → αakY
but if we successively pop the maximal prefix and suffix from all non-terminals (except
for the axioms) in topological order, we can ensure that there are no more crossing
blocks.

Remark 4.26. A crossing block can be of exponential size and therefore, we cannot re-
place alX by alarX explicitly. Instead we create a single JezSymbols for al and ar such
that ar = (ida, phasea, r, weighta). After UNCROSSBLOCKS we replace each maximal
sequences al1al2 . . . alk by a fresh JezSymbol

ad = (ida, phasea + 1, 1, weighta · d),

with

d =
k∑
i=1

li.

Lemma 4.26.1. After applying algorithm 19, there are no more crossing blocks in G. Further-
more, the algorithm runs in O(|G|) time.

Proof. The runtime is easy to see. Computing the length of the a-prefix (suffix) requires
to read at most the whole production. Insertion of al can be done inO(1), since we have
pointers to each non-terminal. Since we go over each production only once this can be
done in O(|G|) time.

After popping the prefix and suffix from a production q with lhs(q) = X , X is not
part of a crossing block, since we replace any occurrence α1Xα2 by α1a

lXblα2 and
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Algorithm 19: UNCROSSBLOCKS: Uncrosses all crossing blocks.

1 foreach X ∈ N \ {St, Sp} in topological order do
2 let X ← α ∈ P and α[1] = a and a is not a fresh letter;
3 remove a-prefix al from α;
4 replace X in productions of G by alX ;
5 if α 6= ε then
6 let b be the last letter of α and b is not a fresh letter;
7 remove b-suffix br from α;
8 replace X in productions of G by Xar;

9 if α = ε then
10 remove X from G;

first(X)[1] 6= a ∧last(X) 6= b (and we do this in topological order for each non-terminal).
Since we progress in topological order it is not possible that we pop a’s or b’s into X
and therefore, first(X)[1] 6= a and last(X) 6= b holds for the for remaining iterations. �

Lemma 4.26.2. Under the assumption that |ωGt | fits in O(1) machine word, algorithm 21
compresses all blocks in G. The compression is performed in O(|G|+ (n+m) log(n+m)).

Proof. We can merge all sequences al1 . . . alk into al1+...+lk by going over the whole
grammar, since |ωGt | fits in O(1) machine word we can do this in O(|G|) time. While
doing this we can create a pointer to the merged entry. Additionally, we can decide
if the block was generated by more than one non-terminal e. g. there was a rule X →
aaaX1bbb and a rule X1 → aaaaα. Only these blocks can be exponential in the size of
(n + m). Therefore, we treat these blocks separately and put them in another list (see
alg. 20). We can sort the list of short blocks in O(|G| + n + m) time using RADIXSORT,
since there are no more than O(|G|) blocks and |∆| ∈ O((n + m)3) (see lemma 4.26.3).
We can sort all other blocks using any modern sorting technique. Since there are at most
n+m non-terminals there areO(n+m) large blocks. We can sort the list of large blocks
Bl in O((n+m) log(n+m)) time. We can join the two sorted lists in O(|G|+ (n+m))
time together. Each compression of an occurrence of a block takes O(1) and therefore,
we can compress all blocks in the merged list in O(|G| + n + m) time. Thus the total
running time is in O(|G|+ (n+m) log(n+m)) �

4.1.6. Alphabet and grammar size

In the last section we often showed that the running time is in O(|G|). But G changes
during the algorithm and therefore we have to bound |G|. Note that even if ωGt and
ωGp shorten, the size of G may increase. Furthermore, we have to ensure that ∆ does
not become too large, since we want to use RADIXSORT for sorting the letters in ∆ and
therefore, ∆ has to be bounded by O((n+m)c), where c is a constant.
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Algorithm 20: GETBLOCKS: Computes a list of pointers to all proper non-
crossing blocks.

input : G;
output: Two lists of pointers, pointing to proper blocks;

1 initialize list Bl;
2 initialize list Bs;
3 foreach q ∈ (Pt ∪ Pp) do
4 r ← rhs(q);
5 for i = 1 . . . | rhs(q)− 1| do
6 if there is a sequence al1 . . . alk , k > 1,∃lj > 1 at position i then
7 let x∗ be the pointer, pointing to al1 ;
8 append (a,

∑k
i=1 li, x

∗) to Bl;

9 else if r[i] = al, l > 1 then
10 let x∗ be the pointer, pointing to al;
11 append (a, l, x∗) to Bl;

12 else if there is a sequence a . . . a of size s > 1 at position i then
13 let x∗ be the pointer, pointing to the first a of the sequence;
14 append (a, s, x∗) to Bs;

15 return (Bl, Bs);

Lemma 4.26.3. The following bounds hold for different pair compression strategies:

Algorithm |G| |∆|
Compress all pairs (alg. 16) O((n+m) log(n+m)) O((n+m) log(n+m))
Compress enough pairs (alg. 18) O(n+m) O(n+m)

Proof. The argument of theorem 4.14, that the length of the uncompressed word shorten
by a constant factor, holds also for the case of compressed words if we use COMPRES-
SALLCROSSINGPAIRS to compress all crossing pairs. This is easy to see since each com-
pressed pair may replace several pairs in ωGt or ωGp . If we use COMPRESSGREEDY-
CROSSINGPAIRS we refer to lemma 4.23.4. So we can assume that there are only con-
stant numbers of phases with respect to ωGt , ωGp and thereforeO(log(min{|ωGt |, |ωGp |}))
number of phases. A production p in P increases due to compression of crossing pairs
by at most O(log(n+m)) and due to block compression by at most 4.

It follows that if we use COMPRESSALLCROSSINGPAIRS we increase the size of G by
O((n + m) log(n + m)) in total. If we use COMPRESSGREEDYCROSSINGPAIRS instead
we would increase the size of G by O(n + m) in total, since there is only two calls of
POP in each phase.

Let’s assume we use COMPRESSALLCROSSINGPAIRS. First considering only the in-
crease due to decompression. The size of G increase by O((n + m) log(n + m)) in total
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Algorithm 21: COMPRESSBLOCKS: Compresses blocks.

input : G;
1 UNCROSSBLOCKS; (Bl, Bs)← GETBLOCKS(G);
2 sort Bl with respect to the letter and the length, using QUICKSORT;
3 sort Bs with respect to the letter and the length, using RADIXSORT;
4 B ← (merge Bl and Bs);
5 k ← −1
6 foreach (a, l, x∗) ∈ B do
7 if k = −1 ∨ k 6= l then
8 al ← fresh letter;
9 k ← l;

10 replace any a sequence at x∗ by (al, phasea + 1, 1, weighta · l)

(during a phase), since there areO(log(n+m)) calls of POP andO(n+m) productions in
G. Second consider the decrease of G due to recompression. We can use the argument
in theorem 4.14 to work also for productions of G. The explicit word of a production at
the beginning of a phase, shorten by a constant factor. Note that we only look at ’old’
symbols of the phase. Since the grammar is in weak CNF the sum of lengths of explicit
words in all productions is |G| − 2(n+m). There maybe 3 positions in rhs(X) without
an successor in ∆. Therefore, a production p is shorten by

rhs(p)− 3

3

and the whole grammar is shorten by

|G| − 2(n+m)− 3(n+m)

3
=
|G| − 5(n+m)

3
.

Let Gi be the grammar after the ith phase. If we consider the increase of the grammar
we get

|Gi+1| = |Gi| −
|Gi| − 5(n+m)

3
+ c1 · (n+m) log(n+m)

=
2

3
|Gi|+ 5(n+m) + 3c1(n+m) log(n+m)

≤ 2

3
|Gi|+ c2(n+m) log(n+m)
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with r = c2(n+m) log(n+m) and G0 = G we get

|Gi| =
(

2

3

)i
|G0|+ r +

(
2

3

)
r + . . .+

(
2

3

)i−1

r

=

(
2

3

)i
|G0|+ r ·

i−1∑
k=0

(
2

3

)k
=

(
2

3

)i
|G0|+ r · c3 =

2

3

i

|G0|+O(r) with c3 < 3

=

(
2

3

)i
|G0|+O((n+m) log(n+m))

and therefore |G| is in O((n+m) log(n+m)) for each phase. Note however that c2 · c3

can be large.

Assume now we use COMPRESSGREEDYCROSSINGPAIRS for the compression of cross-
ing pairs. Again we consider first the increase due to local decompression. Clearly, this
time |G| increases in each phase by at most O(n + m), since we have at most 2 calls of
POP to uncross pairs. The question is how much the size of G decreases due to recom-
pression? The crucial observation is that ∆′l∆

′
r covers 1/4 of occurrences of all pairs in

G. Therefore, we compress 1/8 of letters of those occurring pairs, thusGwill be shorten
by at least 1/16 (using the analysis from theorem 4.14). We derive

|Gi+1| = |Gi| −
|Gi|
16

+O(n+m)

=
15

16
|Gi|+O(n+m).

Using the same calculations as above gives us

|Gi| =
(

15

16

)i
|G0|+O(n+m).

Note that the constant factor is even larger but we showed that the grammar size is in
O(n+m) for each phase if we use COMPRESSGREEDYCROSSINGPAIRS.

We guarantee by the renaming scheme that ∆ = [|∆|]0. We construct ∆ in each phase
by starting with 0 and increase the counter for |∆| by 1 for each fresh letter. Each newly
introduced letter is contained in some right-hand side of G. Uncompressed letters will
be renamed by RENAME (see line line 8 in algorithm 11). All fresh letters created by
compression or by the renaming are in some left-hand side ofG. Since there are no more
then |G| different letters in G it follows that |∆| = O(|G|). Note that this differs from
[34], however we may introduce overall O(|G| log(min{|ωGt |, |ωGp |})) different pairs
(a, i) ∈ ∆× N, where i is the number of the phase. �
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4.2. Fully-compressed pattern matching

Theorem 4.27 (FCEquals). Under the assumption that |ωGt | fits into O(1) machine word,
equality testing using FCEQUALS requiresO((|G|+(n+m) log(n+m)) log(|ωt|)) = O(((n+
m) log(n + m)) · log(min{|ωGt |, |ωGp |})) = O((n + m)2 log(n + m)) using one of the pair
compression techniques.

Proof. Since ωGt and ωGp shorten by a constant factor the algorithm terminates after
log(min{|ωGt |, |ωGp |}) = O(n + m) phases. We have the following running times for
each phase (by using lemma 4.26.3):

• renaming: O(|G|)

• compression of uncrossed pairs: O(|G|)

• compression of crossing pairs: O(|G|)

• block compression: O(|G|+ (n+m) log(n+m)), the factor log(n+m) is required
because we sort large blocks without using RADIXSORT

O(|G|) = O((n + m) log(n + m)), if we compress all pairs or O(|G|) = O((n + m)),
if we compress enough pairs. Therefore, we achieve a total running time of O((n +
m)2 log(n+m)). �

Remark 4.28. There is no theoretical effect of replacing COMPRESSALLCROSSINGPAIRS

by COMPRESSGREEDYCROSSINGPAIRS but it effects the practical running time for some
instances i. e. if log(max{ωGt , ωGp}) fits in one machine word. Note that we require the
condition, that O(|ωGt |) fits in one machine word for the block compression of large
blocks. We should note that the author of [34] introduced a technique to overcome this
condition. The basic idea is to represent large block length by the sum of two number, a
large and a small one. For future work, it should be easy to adapt our implementation
in such a way that we can use this technique. By using this this technique we can get
rid of the log(n+m) factor for sorting large blocks and could achieve a better theoretical
running time.

4.2. Fully-compressed pattern matching

In this section we will shortly discuss the extension of the recompression algorithm to
pattern matching. We use the pattern matching to test if two words share a common
prefix or suffix. String pattern matching is one of the most fundamental operations on
strings. Searching for particular pattern in DNA sequences is one of many exciting ap-
plications. In case of uncompressed words one can solve the problem by using the finite
word automata, the Rabin-Karp algorithm or the Knuth-Morris-Pratt approach [12]. In
our setting the pattern and the text are SLP-compressed words. Many researchers stud-
ied the problem of compressed pattern matching for various compression methods for
decades (see table 4.1). Note that there is a connection between the SLP- and the LZ-
compression shown by the following lemma.
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4. Advanced operations on compressed words

text

pattern

e e e c a a o e e c a o

e e c e e c

Figure 4.2.: An example of the string-pattern matching problem, where we want to find
all occurrences of the pattern eec in the text eeecaaoeecao. The pattern oc-
curs at position 2 and 8.

Lemma 4.28.1 ([10, 33, 49, 50]). Let N be the size of a decompressed text and n be the size of
his LZ-compression. The text can be converted into an equivalent SLP of sizeO(n log(N/n)) in
O(n log(N/n)) time.

Lemma 4.28.2 ([10, 49]). LetG be the grammar of an SLP. G can be converted to an equivalent
LZ of size O(|G|) in linear time.

We will explain the main concepts of the fully-compressed patter matching presented
in [34]. In general we can apply the same replacement scheme but we have to protect
the pattern inside the text. We may destroy an occurrence of the pattern if we replace a
sequence of letters that is only partly part of the pattern.

Example 4.29. In the following example we compress e-blocks. We replace the se-
quence eee by e3. The compression destroys the first occurrence of the pattern.

text

pattern

e e e c a a o e e c a o

e e c e e c

e3 c a a o e2 c a o

e2 c

compression

The problem in example 4.29 is that only the two last letters of the sequence eee are
part of the pattern. We compress only parts of the pattern, consequently, we destroy

Compression method Compression pattern matching algorithm
Run-length [13]
Run-length (two dim.) [5, 6, 7]
Lempel-Ziv (LZ) methods [22, 24, 25, 23, 20, 21, 19]
SLPs [47, 27, 3]

Table 4.1.: Compression methods and pattern matching algorithms concerning these
methods.
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4.2. Fully-compressed pattern matching

this occurrence of the pattern. A even more complicated situation occurs if the pattern
begins and ends with the same letter. In that case it could be that a block of letters is part
of the beginning and the ending of an occurrence of the pattern (see example 4.30).

Example 4.30. In the following example we compress a-blocks. We replace the se-
quence aa by a2. The compression destroys the second occurrence of the pattern.

text

pattern

a b a a b a a

a b a a

a b a a

a b a2 b a2

a b a2

compression

To avoid the destruction of pattern occurrences we fix the end and the beginning of the
pattern right before applying the compression of pairs and blocks. Observe that in case
of pattern matching we do not care whether ωGt = ωGp holds or not. We only have
to protect the information about the occurrences of the pattern in the text. We have to
distinguish between four sub cases [34]:

1. first(Sp) 6= last(Sp)

(a) ωGp does not begin/end with a proper block

(b) ωGp begins/ends with a proper block

2. first(Sp) = last(Sp)

(a) ωGp does not begin/end with a proper block

(b) ωGp begins/ends with a proper block

4.2.1. Fixing different ends

If the pattern does not end and begin with the same letter, i. e. first(Sp) 6= last(Sp), we
can fix the prefix and the suffix of the pattern separately.

Let’s first assume the pattern does not begin with a proper block. In that case we just
compress the pair ωGp [1]ωGp [2] and we are done. Since we introduce a fresh letter,
which will never be compressed during the phase (except if we fix the suffix), it is
impossible that we compress a pair or a block in ωGt that is only partly part of the
pattern. As already mentioned, fixing the ending of the pattern is symmetric i. e. instead
of compressing the pair ωGp [1]ωGp [2] we compress the pair ωGp [|ωGp | − 1]ωGp [|ωGp |].

Let’s assume the pattern begins with a proper block i. e. ωGp = alα with l > 1, α[1] 6= a.
In that case we have to replace each maximal proper a-block of length k = l + r with
r ≥ 0 in Gt and Gp by aral (instead of ak). Furthermore, we compress all other a-blocks
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4. Advanced operations on compressed words

i. e. all a-blocks of length k < l. After the replacement, we can delete al at the end of Gt,
since a pattern can not begin at this position. Again fixing the ending of the pattern is
symmetric i. e. instead of replacing ak by aral we replace ak by alar.

Clearly, blocks of length< l cannot be part of the beginning of the pattern and therefore
we can compress them without further adjustments. The result of example 4.29 after
the fixing would be the following:

text

pattern

e e e c a a o e e c a o

e e c e e c

e e2 c a a o e2 c a o

e2 c e2 c

prefix
fix

e 0 a a o 0 a o

0 0

suffix
fix

4.2.2. Fixing same ends

In that case we have to fix the prefix and the suffix of the pattern together. First of
all we get rid of a special but easy case where ωGp = ak for some a ∈ ∆, k > 0. In
this special case we just compress all a-blocks. We mark each fresh letter ak as being
a compression of an a-block (we require this information for the computation of the
position of an occurrence of the pattern). After this step, the recompression terminates
since |ωGp | = 1.

Let’s move on to the difficult cases. In example 4.30 we would destroy the first occur-
rence of the pattern if we fix the prefix and compress ab. Following the description in
[34], we introduce two markers aL and aR that mark the possible beginning and ending
of a pattern in ωGt . So let l be the length of the maximal block at ωGp [1] and r be the
length of the maximal block at the end of the pattern, possibly l = r = 1. aL repre-
sents the prefix-block of the pattern and aR the suffix-block of the pattern. Since we
are not interested in the position of the ending of the pattern we set weightaR = 0 and
weightaL = weighta · l. Let’s look at some sequence am in ωGt . If m > r, l then an
occurrence of the pattern may begin with the letters am−l and/or end with the letters
am−r. Therefore, we replace am by aRam−laL. If m < l, r the pattern cannot begin/end
with this sequence and therefore, we replace am by am. If min{l, r} ≤ m ≤ max{l, r},
the replacement rely on the relation between l and r:

• l = r: We replace each am by aRaL, since a pattern can start and end with am =
al = ar.
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4.2. Fully-compressed pattern matching

Algorithm 22: FCPMATCHING: Recompression of ωGp and ωGt without destroy-
ing any pattern occurrence.

input : G with L(G) = {ωGt , ωGp};
output: Recompressed grammars ωGp and ωGt ;

1 FIRSTRENAME(G);
2 fix the beginning and the end;
3 while |ωGp | > 1 do
4 COMPRESSBLOCKS(G);
5 Pairs← GETPAIRS(G);
6 COMPRESSPAIRS(Pairs, true);
7 RENAME(G);

8 return Gt, Gp;

• l < r: We replace each al by aL, each ar by aRar−laL and each am, l < m < r by
am−laL. Clearly, since l < r a pattern can not end with a subsequence of l a’s. If
m = r the pattern could begin after r − l a’s. If m < r we know that the pattern
can not end with this sequence of a’s.

• l > r: We replace each al by aRaL and each am, r ≤ m < l by aRam. If m < l the
pattern can not start with this sequence.

Remember that weightaR = 0 and weightaL = weighta · l therefore, if we sum up the
weights of the letter that replace any am, we get weighta ·m. After these replacements,
the pattern is well protected and we can start the phase. Note that aR and aL won’t be
compressed since they are fresh letters of the phase! Before starting the phase we can
delete the occurrence of aL at the end of ωGt since a pattern can not start there. The
same is true for an occurrence of aR at the ω[1]. To reduce the size of the grammar and
the fully-compressed words by a constant factors we additionally compress all pairs
aL(∆\{aL}) and (∆\{aR})aR. We are in case (a) and therefore, we can do this without
destroying any occurrence of the pattern in Gt.

In the last step we compress a(∆ \ {a}) if r = 1 < l. At that time the pattern can
not end with a. Suppose there is an occurrence of ab and the pattern starts at that
position with b. Before we start the fixing process the pattern had a prefix al with
l ≥ 1. Therefore, there was a block aal at this position. By the replacement scheme,
described above, we would had replaced this sequence by aRal+1−1aL = aRa1aL (since
r < l < m). But the letter a1 is a fresh introduced letter, i. e. a1 6= a. This is somehow
a special case since a1 and a represents the same fully uncompressed word, but they
are not equal. This leads to a contradiction and therefore the pattern can not cannot
start with b. We can conclude that this last step can’t destroy an occurrence of the
pattern in Gt. The following shows the fixing same ends for example 4.30. Observe
that weight0 = weight1 = weighta1 + weightb = 2, hence the second occurrence of the
pattern starts at position weight1 + weighta1 = 3.
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4. Advanced operations on compressed words

text

pattern

a b a a b a a

a b a a

a b a a

aL b aR a1 aL b aR a1 aL

aL b aR aL b aR

0 aR a1 0 aR a1

0 aR 0 aR

1 a1 1 a1

1 1

aL(∆ \ {aL})

compression of

(∆ \ {aR})aR

compression of

Lemma 4.30.1 ([34]). Fixing different or same ends can be performed inO(|G|+(n+m) log(n+
m)) time. It introduces O(n+m) new letters.

All compressions of pairs or blocks can be done in O(n + m) since we only require
constant number of calls of POP.

Lemma 4.30.2 ([34]). A phase of FCPMATCHING shortens G and ωGp by a constant factor.

Definition 4.31 (Weight of non-terminals). Let X ∈ N be non-terminal of G. we define
the weight of weightX inductively by:

X → α alpha ∈ ∆∗

weightX =
∑

a∈alph(α)

weighta

X → α α = ω0X1 . . . Xnωn

weightX =

(
n∑
i=0

∑
a∈alph(ωi)

weighta

)
+

n∑
i=1

weightXi

Since the recompression algorithm for pattern matching is equal to the equality testing,
with the additional fixing before each phase, and we still shorten the shortenG and ωGp
by constant factor we get the following theorem.

Theorem 4.32. Under the assumption that |ωGt | fits in O(1) machine word after applying
FCPMATCHING on Gt (text) and Gp (pattern), which requiresO((n+m)2 log(n+m)) time,
we can ask for the position of the kth occurrence of the pattern in O(n+m) time.

Proof. The time bound for applying FCMATCHING is a result derived from the fact that
we only add the additional fixing part to each phase in combination of lemma 4.30.1.

Since O(|ωGp |) does fit in O(1) machine word we can calculate the weight weighta of
a JezSymbol as suggested in definition 4.11 and for each non-terminal X using defini-
tion 4.31. For non-terminals we can do this in topological order in overall O(|G|) time
and for JezSymbols we require no additional time. After the last phase there are two
cases:

(a) c = al is the result of a block compression of a letter a: We go over Gt and when-
ever we spot same ak (for k ≥ l) we can add k− l+1 to the number of occurrences
of the pattern.
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4.3. Fully-compressed LCP and LCS

(b) c = ab is the result of a pair compression: We go over Gt and whenever we spot c
we increase the number of occurrences of the pattern by 1.

For each X we compute and store how many occurrences of pattern are contained in
val(X). We can do this, as usual, in topological order using (a) or (b). If we ask for the
kth occurrence of ωGp in ωGt we read the derivation path to this explicit occurrence. For
a non-terminal X on the path, we can decide whether we should search for the pattern
in its right-hand side i. e. X is part of the path and the position of the occurrence is
in val(X) or we should skip it. To compute the position of the occurrence, we add all
weights of visited symbols together (except for non-terminals that are part of the path).
Computing the weight for all non-terminals requiresO(|Gt|) time. The traversal can be
done inO(|Gt|) time. By lemma 4.30.1 in combination of lemma 4.26.3 |Gt| = O(m) and
the statement follows. �

4.3. Fully-compressed LCP and LCS

In [3], they extend the set of operations presented in [45] by the longest common prefix
LCPREFIX and longest common suffix LCSUFFIX. They show that their data structure
supports these operations inO(log(n)) time if the the strings were contained in the data
structure, where n is the length of the involved strings. Unfortunately, the algorithm
presented in [34] does not support these operations.

Example 4.33. Let ωGt = edcbhz, ωGp = edcbaz, i. e. the words differ only at position 5.
The first level of the tree shows the word before the FCEQUALS starts. The second level
shows the words after FIRSTRENAME and each following level shows the situation after
a phase. After the first phase ωGt and ωGp differ at each position.

1

0

6

6

z

1

5

h

1

b

3

3

2

c

3

d

5

4

e

0

1

0

6

z

0

a

2

1

b

2

c

4

4

3

d

4

e

Figure 4.3.: The progress of FCEQUALS for ωGt = edcbhz and ωGp = edcbaz. We assume
that a < b if a comes before b in lexicographical order.

The main problem is the missing phase of breaking words into blocks. If we break a
word ω into n blocks such that ω = ω1 . . . ωn and we compress these blocks equally by
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4. Advanced operations on compressed words

computing some signature σ we can be sure that if σ(ωi) = σ(ωj) holds, ωi = ωj follows.
In case of the longest common prefix the challenge would be to find at each stage the
block containing the first different letter (from left to right). Since all blocks left from this
block are equally compressed, we have to decompress only one block for each phase
of the compression (see [3]). The same principle works for CONCATENATE and SPLIT.
In both cases we have to deal with blocks around the position of the concatenation or
split, respectively.

However, the recompression algorithm treats the whole word as one single block. So
even if two words differ only at one position, they may share not a single fresh intro-
duced letter after a phase of the algorithm (see example 4.33). We had the same problem
in the setting of pattern matching where we protect the pattern such that we never com-
press a sequence that is only partly part of the pattern. For example 4.33, this would
mean that we have to avoid the compression of a sequence that is only partly part of
the longest common prefix. Unfortunately, we already had to know lcp({ωGt , ωGp}) to
do this. The only way to overcome this problem is to break the word into blocks before
the compression starts which seems impossible since we somehow would have to go
through the whole word and mark some letters that should not be compressed. Fur-
thermore, we have to mark the exact some letters in the both fully-compressed words
to compress them equally.

Remark 4.34. In each phase of recompression algorithm we know very little about the
fully decompressed version of a letter. If a = b it follows that the fully decompressed
words ωa and ωb are equal. If a 6= b and they have the same length, ωa 6= ωb follows.
But if ωa 6= ωb and |ωa| 6= |ωb| we can not compare them at all. ωa could be a prefix of
ωb and vice versa.

4.4. The singleton set problem

We are now ready to solve the first problem that relies on the fully-compressed equality
test presented in section 4.1.

Theorem 4.35 (The singleton set problem for CFGs). The following problem can solved in
polynomial time.

Input: Given a CFG G

Output: |L(G)| = 1?

Definition 4.36 (Singleton productions and non-terminals). Let G = (∆, N, S, P ) be a
reduced context-free grammar in weak Chomsky normal form without ε-productions
(except for the axiom). We call a production p ∈ P a singleton production if for all deriva-
tions lhs(p) ⇒ rhs(p) ⇒∗ α we generate the same word in ∆∗. We call a non-terminal
X ∈ N a singleton non-terminal of G if for all derivations starting from X we generate
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4.4. The singleton set problem

the same word in ∆∗. We can define the set of all singleton non-terminals SingletonG
inductively:

∀q ∈ {p ∈ P | lhs(p) = X} : q = X → ω ω ∈ ∆∗

X ∈ SingletonG

∀p ∈ P : (lhs(p) = X,∀Y ∈ rhs(p) : Y ∈ SingletonG)

X ∈ SingletonG

Theorem 4.37. Let G = (∆, N, S, P ) be a context-free grammar and n = |G|. Algorithm 23
tests in O(n3 log(n)) time if L(G) is a singleton set.

Proof (sketch). The condition that G is in weak Chomsky normal form is important.
Otherwise, the definition above does not work. To simplify the computation it is easier
to eliminate ε-productions beforehand. From the inductive definition of SingletonG we
can derive an algorithm for solving the decision problem. If L(G) is a singleton set it
has to be acyclic (since we eliminate ε-productions), otherwise we could easily create
infinite many words. Therefore,� is defined onG. To check whetherL(G) is a singleton
set we first check for all non-terminals X in

{Y ∈ N | ∀p ∈ P : (lhs(p) = Y ⇒ rhs(p) ∈ ∆∗)},

if
|{rhs(q) | q ∈ P ∧ lhs(q) = X}| = 1

holds. If this is not the case, L(G) is not a singleton set. Otherwise we can add all these
non-terminal to SingletonG. Suppose we have a non-terminal X with some produc-
tions in G. Let’s assume two of them are p = X → X1 . . . Xk and q = X → X ′1 . . . X

′
k′

and ∀i ∈ [k] : Xi ∈ SingletonG and ∀j ∈ [k′] : Xj ∈ SingletonG. We check if the
word derived by starting from p is equals to the word derived by starting from q. Since
all non-terminals at the right-hand sides are singletons, we derive exactly one word ωq
from q and one word ωp from p. Furthermore, we can pick for each non-terminal Xi, X

′
j

exactly one production pi, qj with lhs(pi) = Xi, lhs(qj) = Xj to compute the deriva-
tions (this also hold inductively for all productions we add). Since G is acyclic we just
construct two SLPs representing ωq and ωp. We apply FCEQUALS for these SLPs. Let
p1, . . . pk be all productions with ∀i ∈ [k] : lhs(pi) = X . Then we first check the equality
of words derived from p1 and p2 afterwards we equality for words derived by p2, p3 and
so on. Whenever two words aren’t equal we can be sure that L(G) is not a singleton set.
If on the other hand all words are equal we can add X to SingletonG and proceed until
all X ∈ N are contained in SingletonG. After this process terminates without reporting
that some words aren’t equal, we can be sure that L(G) is a singleton set. Since � is
defined on G we can test productions in topological order of their left-hand sides and
eventually decide X ∈ Singleton or L(G) is not a singleton set.
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By theorem 4.27 we can decide for two given SLPs G1, G2 if

L(G1) = L(G2)

in O(n2 log(n)) time, where n = |G1| + |G2|. For constructing the SLPs we use for
generating a shortest word, but replacing the sorted heap by an unsorted one. Since
there are are only O(|P |) productions and the construction of an SLP requires O(|G|)
time, the statement follows. �

Remark 4.38. We can even drop the condition that the grammar is reduced and in
wCNF without ε-productions, since we can transform any grammar into wCNF with-
out ε-productions in linear time. Furthermore, the size of the constructed grammar is
linear in the size of G.

Algorithm 23: ISSINGLETON: Checks whether L(G) is a singleton set.

input : G = (∆, N, S, P );
output: true if G is a singleton set, otherwise false;

1 transform G into wCNF without ε-productions;
2 L← GETORDER(G);
3 if ∃X ∈ N : X /∈ L then
4 return false;

5 foreach X ∈ N in topological order do
6 PX ← {q ∈ P | lhs(q) = X};
7 G1 ← undefined;
8 G2 ← undefined;
9 foreach p ∈ PX do

10 P ′ ← ((P \ PX) ∪ {p});
11 if G2 is defined then
12 if ¬ISEQUALS(G1, G2) then
13 return false;

14 G′ ← (∆, N,X, P ′);
15 G1 ← GETWORD(G′);
16 G2 ← G1;

17 return true;
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5. The morphism equivalence problem for
context-free languages

In the following chapter we will discuss the morphism equivalence problem for context-
free languages. [35, 47] showed the following

Theorem 5.1 ([35, 47]). The following problem is in PTIME.

Input: Given a CFG G = (∆, N, S, P ) and two morphisms µ1, µ2 : ∆∗ → Σ∗

Output: Does ∀ω ∈ L(G) : µ1(ω) = µ2(ω) hold?

The problem was original formulated by [32] and is strongly connected to problems
from automata theory and formal languages. Recently [52, 9] found a connection be-
tween this problem and equivalence problem of N2Ws, STWs and LTWs. [35, 47] im-
proved the upper bound of the test set size from double exponential [1] and single
exponential [36] to polynomial, or more precisely to O(m6), where m is the number of
productions of the grammar. Furthermore, they give a lower bound of Ω(m3).

Theorem 5.2 ([32]). The following problem is undecidable.

Input: Given a deterministic context-sensitive language L G = (∆, N, S, P ) and two
morphisms µ1 : ∆∗ → Σ∗, µ2 : ∆∗ → Σ∗

Output: Does ∀ω ∈ L : µ1(ω) = µ2(ω) hold?

The huge gap of undecidable and decidable in polynomial time between deterministic
context-sensitive and context-free languages is quite surprising.

5.1. Test sets

By the Ehrenfeucht conjecture, which was proved to be true, we can reduce the prob-
lem of the morphism equivalence problem for context-free languages to the problem of
testing the agreement of morphisms µ1, µ2 on a finite test set of words T ⊆ L(G).

Theorem 5.3 (Ehrenfeucht conjecture [2, 26]). For each language L ⊂ ∆∗ over a finite
alphabet ∆ there exists a finite subset T ⊆ L such that for any two morphisms µ1, µ2 on ∆∗

∀ω ∈ L : µ1(ω) = µ2(ω) ⇐⇒ ∀ω ∈ T : µ1(ω) = µ2(ω).



5. The morphism equivalence problem for context-free languages

Definition 5.4 (Test set [47]). Let L be a language and ∆,Σ be alphabets. We say T ⊆ L
is a test set for L if and only if:

(i) T ⊆ L

(ii) for any two morphisms µ1, µ2 : ∆∗ → Σ∗

(∀ω ∈ T : µ1(ω) = µ2(ω))⇒ (∀ω ∈ L : µ1(ω) = µ2(ω)) .

The main task is to find and generate a test set that is as small as possible. We use
the same strategy introduced in [47] to generate such a set. A word in the test set
is represented by a SLP. To test morphism equality on a word ωG we first apply the
morphisms on the SLP (see lemma 3.11.1), which gives us two SLPs Gµ1 and Gµ2 such
that ωGµ1 = µ1(ωG) and ωGµ2 = µ2(ωG). Then we apply FCEQUALS on Gµ1 and Gµ2 .
If ωGµ1 is equal to ωGµ2 , we test the next word in the test set, otherwise we can report
that µ1, µ2 don’t agree on G. The rest of the chapter describes the construction of the
test set of G that contains short words of L(G). We skip proofs that are not relevant for
the construction itself, you can find all these proofs in the original material.

5.2. Test sets for context-free languages

Lemma 5.4.1. Let L be a language T1 a test set for L and T2 ⊆ T1 a test set for T1, then T2 is
a test set for L.

This follows directly from the definition of a test set. By this fact and the key lemma 5.5.1,
[35, 47] proved that the linearisation Llin of a context-free language L is a test set for L.
The proof of the key lemma is very long and technical. Since the proof doesn’t play a
role in the construction of the test set, we refer to [35, 47] for details.

Definition 5.5. We define G4 = (∆, N, S, P4) by the following productions

S → b4X3b̂4, S → a4X3â4,

X3 → b3X2b̂3, X3 → a3X2â3

X2 → b2X1b̂2, X2 → a2X1â2

X1 → b1b̂1, X1 → a1â1.

Furthermore, we define L4 = L(G4) and T4 = L4 \ {b4b3b2b1b̂1b̂2b̂3b̂4}.

Lemma 5.5.1 (Key lemma [35, 47]). T4 is a test set for L4.

Lemma 5.5.2 ([35, 47]). Let u,w, z ∈ ∆∗. If two morphisms µ1, µ2 agree on words uw, zw, uy
they agree on zy.
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5.2. Test sets for context-free languages

Proof. We have

µ1(uw) = µ2(uw) = a1 . . . ak,

µ1(zw) = b1 . . . bj1 aj2 . . . ak︸ ︷︷ ︸
µ1(w)

= b1 . . . bj3 aj4 . . . ak︸ ︷︷ ︸
µ2(w)

= µ2(zw),

µ1(uy) = a1 . . . ai1︸ ︷︷ ︸
µ1(u)

ci2 . . . ck′ = a1 . . . ai3︸ ︷︷ ︸
µ2(u)

ci4 . . . ck′ = µ2(uy).

Furthermore, we get

µ1(zwuy) = b1 . . . bj1 ai1+1 . . . aka1 . . . ai1︸ ︷︷ ︸
µ1(wu)

ci2 . . . ck′

= b1 . . . bj3 ai3+1 . . . aka1 . . . ai3︸ ︷︷ ︸
µ2(wu)

ci4 . . . ck′ = µ2(zwuy)

If we delete µ1(wu) and µ2(wu) from the middle part of µ1(zwuy), and µ2(zwuy) respec-
tively, the resulting words are equal if and only if they were equal before the deletion.
Note that µ1(wu) has to be equal to a shifted version of µ2(wu), therefore we get

µ1(zy) = µ1(z)µ1(wu)µ1(wu)−1µ1(y)

= b1 . . . bj1ci2 . . . ck′ = b1 . . . bj3ci4 . . . ck′

= µ2(z)µ2(wu)µ2(wu)−1µ2(y) = µ2(zy)

�

Definition 5.6 (Non-terminal word). Let G = (∆, N, S, P ) be a reduced context-free
grammar. Then for each X ∈ N the word ωX is a shortest word derived by a derivation
starting from X .

Definition 5.7 (Linearisation of a CFG). LetG = (∆, N, S, P ) be a context-free grammar
in weak Chomsky normal form without useless productions and non-terminals. We
call Glin = (∆, N, S, Plin) a linearisation of G where Plin is defined as follows:

p : X → X1X2

X → ωX1ωX2 ∈ Plin
X → ωX1X2 ∈ Plin
X → X1ωX2 ∈ Plin

p : X → Y

X → Y ∈ Plin
X → ωY ∈ Plin

p : X → α α ∈ ∆∗

X → α ∈ Plin

We interpret all ωX as words in ∆∗.

Definition 5.8 (Grammar graph). Let Glin = (∆, N, S, Plin) be a linear grammar. We
call the directed multigraph G = (V,E) grammar graph of grammar Glin with

V =N ∪ {T},
E ={(u, v) ∈ V × V | ∃p ∈ Plin : lhs(p) = u ∧ v ∈ (alph(rhs(p)) ∩N)} ∪
{(X,T ) ∈ V × T | ∃(X → α) ∈ Plin, α ∈ ∆∗}.
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S

X1

Xa

Xb

T(ε, a)

(ba, ε)

(ba, a)

(ε, a)

(b, ε)

(baa, ε)

(baa, a)

(b, a)

(ε, a)

(b, ε)

(a, ε)

Figure 5.1.: G of the linear grammar of example 5.11. Note that instead of the explicit
word, e. g. baa, we construct a SLP generating the corresponding word e. g.
ωS .
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Furthermore, we define a function w : E → ∆∗ × ∆∗ such that w((u, v)) = (ωX1 , ωX2)
where ωX1 , ωX2 are non-terminal words in the production of the corresponding edge.
If v 6= T , ωX1 or ωX2 is equal to the empty word ε (see fig. 5.1).

Definition 5.9 (Max word length). Let L be a language. Then maxi(L) is the set of
words in L of length at most i.

Definition 5.10 (Partly linear language). LetG = (∆, N, S, P ) be a reduced context-free
grammar in Chomsky normal form and Glin = (∆, N, S, Plin) its linearisation. Then a
word in Ld(G) is generated by derivation trees such that productions corresponding to
nodes of height at most d are from Plin and all other productions are from P .

Example 5.11 (Linearisation of a CFG). Let G = (∆, N, S, P ) with productions

S → X1Xa,

X1 → SXa, X1 → XbXa,

Xa → a,

Xb → b

then Plin contains the following productions

S → X1a, S → baXa S → baa,

X1 → Sa, X1 → baaXa, X1 → baaa,

X1 → Xba, X1 → bXa, X1 → ba,

Xa → a,

Xb → b.

The grammar graph G of Glin is displayed in fig. 5.1.

Lemma 5.11.1. Let G = (∆, N, S, P ) be a reduced context-free grammar in Chomsky normal
form. Then we can construct Glin in O(|N | · (|G|+ |P | log(|P |))) and G in O(|G|) time. The
size of the linear grammar Glin is in O(|G| · |N |) and the size of G is in O(|G|).

Proof. We have to construct all productions for the SLPs and at most 3 productions for
each production inG. We can construct for eachX ∈ G a SLP that represents the shortest
word of the grammar GX = (∆, NX , X, PX) in O(|G| + |P | log(|P |)) time using algo-
rithm 6. The grammar of the SLP is of sizeO(|G|) and we requireO(|N |) SLPs. Therefore
the size of Glin is at most 3 · |G| + |N | · |G| which is in O(|G| · |N |). The construction
of all SLPs requires overall O(|N | · (|G|+ |P | log(|P |))) time and the construction of the
remaining productions requireO(|G|) time. Overall it takesO(|N | · (|G|+ |P | log(|P |)))
time to construct Glin. An edge (ωX1 , ωX2) of G is represented by the couple (X1, X2),
therefore the construction of G takes O(|G|) time. �

Remark 5.12. Note that for the construction of Glin we have to construct SLPs with
distinct non-terminals. Otherwise it could happen that a SLP is not well-defined.
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Theorem 5.13 ([35, 47] Test sets for context-free languages). Let G be a context-free gram-
mar, then L(Glin) is a test set for L(G).

Proof. We prove the following

(i) maxi(Ld+1) is a test set for maxi(Ld) for i ≥ d+ 1 ≥ 1

(ii) maxi(Llin) is a test set for maxi(L) for i ≥ 1

(iii) L(Glin) is a test set for L(G)

(i) Let’s assume that morphisms µ1, µ2 agree on maxi(Ld+1). Let ω be a word in maxi(Ld)\
maxi(Ld+1). ω is of the form uvxw and since we use productions from Plin for deriva-
tions on the level ≤ d in the derivation tree, there is a non-terminal X at height d and
a derivation steps S ⇒∗G α ⇒ uXw. For the next derivation steps we use productions
from P to derive uvxw and since the grammar is in Chomsky normal form, the next
derivation step would be uXw ⇒G uX1X2w. However, we know

uωX1X2w, uX1ωX2w, uωX1ωX2w ∈ Ld+1.

Using lemma 5.5.2 and the fact that µ1, µ2 agree on these words, we can follow that they
agree on uvxw.

(ii) From (i) we get maxd(Ld+1) is a test set for maxd(Ld) and maxd(Ld+2) is a test set for
maxd(Ld+1) therefore maxd(Ld+2) is a test set for maxd(Ld) and so on. We can derive
that maxd(Ld) is a test set for maxd(L0) = maxd(L). Since G is in Chomsky normal
form, every derivation tree generating a word of length at most d contains only internal
nodes of height at most d. Hence, maxd(Ld) = maxd(Llin) and the result follows.

(iii) Since maxi(Llin) is a test set for maxi(L) for i ≥ 1, we can construct the following
test set:

∞⋃
i=1

max
i

(Llin) = L(Glin)

which is a test set for
∞⋃
i=1

max
i

(L) = L.

�

Remark 5.14. In the proof of theorem 5.13 we assume that the grammar G is in Chom-
sky normal form. For the following construction of the test set it is sufficient that G is
in weak Chomsky normal form.
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5.3. Test sets for linear grammars

5.3. Test sets for linear grammars

If we would have a construction for test sets for an arbitrary linear grammar, we get by
theorem 5.13, that we can construct test sets for arbitrary context-free grammars.

Definition 5.15 ([35, 47] Path). Let p = (v0, v1), (v1, v2), . . . , (vn−1, vn) be a path of length
n of the grammar graph of Glin and assume w((vi, vi+1)) = (ωli, ω

r
i ). Then we extend

the definition of w to paths in a natural way i. e.

w(p) = ωl0 . . . ω
l
n−1ω

r
n−1 . . . ω

r
0 ∈ ∆∗

is the word generated by the path p.

We get the following connection between Glin and its graph:

Lemma 5.15.1. Let Glin be a linear grammar then,

L(Glin) = {w(p) | p is a path of the graph of Glin and p = (S, v1) . . . (vn−1, T ).}.

Therefore we can contract all words in L(Glin) by traversing through the graph of Glin
starting in S and ending in T . While traversing the graph, we can concatenate all words
of visited edges.

Definition 5.16 (Non-terminal trees). Let Glin = (∆, N, S, Plin) be a linear grammar.
We define for each X ∈ N a unique tree of X by picking one tree out of the set of trees.
We denote this tree by tree(X). The tree contains all nodes of the grammar graph that
are reachable from X and X is the root of the tree.

X1

XbXa

T

(a, ε)

S

(ε, a)
(ab, ε)

(ε, a)

X1

Xb

T

(b, ε)

XaS

(ε, a)
(abaa, ε)

(ε, a)

Figure 5.2.: Two possible trees for X1 of the grammar graph displayed in fig. 5.1.

Remark 5.17 (Non-terminal trees). For a non-terminal X there exit several trees (see
fig. 5.2). For the following construction it is sufficient to pick only one of these trees.

Definition 5.18 (Plandowski path). LetGlin = (∆, N, S, Plin) be a linear grammar, G the
grammar graph of Glin and T = {tree(X) | X ∈ N}. We call the following paths λ =
(u1, v1)(u2, v2) . . . (un, vn), Plandowski paths of a linear grammar. We start in tree(S)
traverse to u1 and traverse the edge (u1, v1) in G. We go in tree(v1) traverse to u2 and
take the edge (u2, v2) and so on. In the last step we traverse the edge (un, vn) in G go in
tree(vn) and traverse to T . We call an edge of a Plandowski path, Plandowski edge.
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5. The morphism equivalence problem for context-free languages

Remark 5.19. For a Plandowski path λ = (u1, v1)(u2, v2) . . . (un, vn) it is not necessary
that vi = ui+1 but ui+1 has to be reachable from vi. Therefore, for some sequences the
Plandowski path might be undefined. For each sequence of Plandowski edges, at most
one path is in G associated.

Lemma 5.19.1. Let Glin = (∆, N, S, Plin) be a linear grammar, G the grammar graph of Glin.
Furthermore, let path(λ) be the path of edges in G associated with the Plandowski path λ and
Fk(Glin) = {w(path(λ)) | λ has at most k edges.}, then F6(Glin) is a test set for L(Glin).

Proof. First note that G4 in definition 5.5 is a linear grammar that has the following
grammar graph:

S X3 X2 X1 T

(b4, b̂4)

(a4, â4)

(b3, b̂3)

(a3, â3)

(b2, b̂2)

(a2, â2)

(b1, b̂1)

(a1, â1)

Furthermore, we know that if µ1, µ2 agree on words in L(G4)\{ω}with ω ∈ L(G4) they
agree on L(G4). Let k ≥ 6 and suppose µ1, µ2 agree on Fk(G). Let

λ = (u1, v1), . . . , (uk+1, vk+1)

such that w(path(λ)) ∈ Fk+1(G) i. e. λ is a Plandowski path with k + 1 edges. Let π1 be
the path from S to u2 in tree(S), π2 be the path from v2 to u4 in tree(v2), π3 be the path
from v4 to u6 in tree(v4) and π4 be the path from u6 to t in tree(u6) (see fig. 5.3). If we

S

u1 v1

u2 v2

u3 v3

u4 v4

u5 v5

u6 v6

u7

v7 uk+1

vk+1

t

π1 π2 π3 π4

e

Figure 5.3.: Situation in the proof of lemma 5.19.1. All path except the top most one
belongs to Fk(G).

remove at least one of the Plandowski edges (u1, v1), (u3, v3), (u5, v5) or the sequence
of Plandowski edges (u7, v7), . . . , (uk+1, vk+1) from λ and use π1, π2, π3 or π4 instead,
the new Plandowski path has k Plandowski edges. Since µ1, µ2 agree on Fk(G) we can
follow by using the key lemma 5.5.1 that µ1, µ2 agree on Fk+1(G). Using lemma 5.4.1
and the fact that for each word ω ∈ L(G) there exists a n such that ω ∈ Fn(G) we can
conclude that F6(Glin) is a test set for L(Glin). �

Remark 5.20. The reason why the proof above isn’t applicable for k < 6 is that we don’t
find paths π1, . . . , π4. It is necessary to get a valid Plandowksi path if we replace a path
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5.3. Test sets for linear grammars

by some π, π has to end in a tree node of λ. Furthermore, the path should contain a
Plandowski edge. By these conditions it is not possible to find all these paths for F6.
The path e in fig. 5.3, for example, can’t be used to build π1 since, if we use e, we would
traverse through a tree two times in a row. Therefore the path would not be contained
in F5. In addition we can’t use the path from S to u1, since in that case we would not
replace a Plandowski edge.

Algorithm 24: MORPHSIMEQUALITY: Tests if µ1, µ2 agree on a CFG G.

input : G,µ1, µ2;
output: true if µ1, µ2 agree on a CFG G;

1 construct the grammar graph G of G;
2 construct all trees T ;
3 return AGREEONPATH([], µ1, µ2,G, T )

Theorem 5.21. LetG = (∆, N, S, P ) be a context-free grammar. We can check whether µ1, µ2

agree on G using algorithm 24 in O(m6 · (|G| · |N | · r)2 log(|G| · |N | · r)) time, where m is the
number of productions in G and r = max{max{|µ1(a)|, |µ2(a)|} | a ∈ ∆}.

Proof. By lemma 5.11.1 we constructGlin and G inO(|N | ·(|G|+ |P | log(|P |))) time . We
organize the SLPs in a mapping, such that we can access a SLP GX for a non-terminal
X ∈ N in constant time. Furthermore, we construct for each non-terminal X ∈ N a
tree tree(X) of size O(|G|) in O(|G|) time using a breath first search on G. We traverse
through each tree and each Plandowski edge, starting with the tree tree(S) in a depth
first fashion (see algorithm 25). We use two stacks, one for the Plandowski edges and
one for the tree paths, therefore we can add and remove a tree path and a Plandowski
edge in O(1) time.

Suppose we generate a path (X1, Y1) . . . (Xn, Yn) where Xi, Yi ∈ N . then we construct
the word G′ = (∆, N ′, S′, P ′) where N ′, P ′ contain all non-terminals and productions
of GXi , GYi for 1 ≤ i ≤ n. We add the production

S′ → X1 . . . XnYn . . . Y1

to P ′. Then we apply the morphism µ1, µ2 on G′ and transform both grammars into
Chomsky normal form to get grammarsG1, G2. Afterwards we call FCEQUALS(G1, G2).

Clearly, each Plandowski path is unique and there are

6∑
i=1

3mi = O(m6)

such paths, where m is the number of productions of G. For each such graph we tra-
verse at most 6 trees of size at most O(|N |). Therefore, the construction of one path
can be done in O(|N |) and the construction of all paths in O(m6 · |N |) time. The
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5. The morphism equivalence problem for context-free languages

size of one path is in O(|N |) therefore, the size of the SLP, representing the word de-
fined by the path, is in O(|G| · |N |). By lemma 3.11.1 and 3.11.2 the size of the fi-
nal grammars is in O(|G| · |N | · max{max{|µ1(a)|, |µ2(a)|} | a ∈ ∆}) and they can
be constructed in O(|G| · |N | · max{max{|µ1(a)|, |µ2(a)|} | a ∈ ∆})) time. By theo-
rem 4.27 the equality test of all words require O(m6 · (|G| · |N | · r)2 log(|G| · |N | · r))
where r = max{max{|µ1(a)|, |µ2(a)|} | a ∈ ∆}. Therefore the overall running time is
O(m6 ·(|G| · |N | ·r)2 log(|G| · |N | ·r)+m6 · |G|) = O(m6 ·(|G| · |N | ·r)2 log(|G| · |N | ·r)). �

Performance tuning

Suppose we want to solve the morphism equivalence problem on a singleton set i. e.
L(G) = {ω}. If we apply algorithm 24 without further improvements we would test
the equality of µ1(ω) and µ2(ω) multiple times. All Plandowski paths would represent
the same word, since each word represented by a Plandowski path is in the language of
the grammar. To reduce the running time we first check which non-terminals of G are
in SingletonG in O(|G|3 log(|G|)) time using algorithm 23. We avoid the construction
of nodes in G for non-terminals X ∈ SingletonG, i. e. if there exists a production X →
X1X2 in P and X1 ∈ SingletonG we do not add the production X → X1ωX2 to Plin.
Since we construct trees based on G, trees also contain no singleton non-terminal.

The second improvement can be made due to parallelization. The agreement test of
µ1, µ2 on each of the O(m6) words can be done in parallel. The problem is highly par-
allelisable in an easy way. Imagine we would had m processors. Each processor could
check the agreement for Plandowski paths for a fixed first Plandowski edge. Therefore
we could reduce the running time to O(m5 · (|G| · |N | · r)2 log(|G| · |N | · r)).
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5.4. The periodicity problem on context-free languages

Definition 5.22 (Periodic words languages [9]). A word w is said to be periodic of pe-
riod u if u is the smallest word such that w ∈ u∗. A language L is said to be periodic of
period u if u is the smallest word such that L ⊆ u∗.

Theorem 5.23 ([9]). The following problem is in PTIME.

Input: Given a CFG G = (∆, N, S, P ) with L(G) 6= ∅

Output: Is L(G) a periodic language?

The algorithm for testing equality of two LTWs includes the test whether a non-empty
language is period.

Lemma 5.23.1 (Periodicity lemma). Let u,w words over ∆∗ then uw = wu if and only if
u = ε ∨ w = ε or u,w are of the same period.

Proof. First assume uw = wu: We prove by induction over |u|+ |w| that u = ε ∨ w = ε
or u,w are of the same period. Suppose |u| + |w| = 0 ⇒ u = w = ε and the statement
follows. Suppose now |u| + |w| = n > 0. If |u| = |w| it follows that u is a prefix of w
and w a prefix of u and therefore u = w and we are done. Otherwise, assume w. l. o. g.
|w| > |u|. Clearly, u is a prefix of w and therefore we have

w = ut (5.1)

for some t 6= ε. By this we get

uw = wu ⇐⇒ uut = utu ⇐⇒ ut = tu.

However, |u|+ |t| < |u|+ |w|. Since u, t 6= ε it follows, by the induction hypothesis, that
u, t are of the same period z i. e. u = zi, t = zj , i, j ≥ 1 and by using eq. (5.1) we get

w = ut = zizj = zi+j

which proves that u,w are of the same period.

Suppose u = ε ∨ w = ε or u,w are of the same period: If u or w is the empty word, it is
trivial that uw = wu holds. Suppose u and w share the same period z i. e. u = zi, w =
zj , i, j ≥ 1. We get

zizj = uw = zi+j = zjzi = wu

�
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5. The morphism equivalence problem for context-free languages

Theorem 5.24. Let G = (∆, N, S, P ) be a non-empty context-free language. We can check
whether L(G) is periodic in O(m6 · (|G| · |N |)2 log(|G| · |N |)) time, where m is the numbers
of productions in G.

Proof. Let G = (∆, N, S, P ) be a context-free grammar. By using lemma 3.6.2, we can
construct a SLP G′ = (∆′, N ′, S′, P ′) for a shortest non-empty word of L(G) in O(|G| +
|P | log(|P |)) time. Furthermore, we can copy G′ to construct a G′′ = (∆′′, N ′′, S′′, P ′′)
with ωG′ = ωG′′ in O(|G′|) time. ∆′ and ∆′′ are copies of ∆. We construct morphisms
µ′ and µ′′ such that µ′ maps every a ∈ ∆′′ to ε and each a ∈ ∆′ to the corresponding
a ∈ ∆. µ′′ on the other hand maps a ∈ ∆′ to ε and a ∈ ∆′′ to the corresponding a ∈ ∆.
Furthermore, we construct G0 = (∆, N ∪N ′ ∪N ′′, S0, P0) with P0 = P ∪ S0 → S′SS′′.
G is of period ωG′ if and only if

∀u ∈ L(G) : ωG′u = uωG′′ ⇐⇒ ∀w ∈ L(G0) : µ1(w) = µ2(w)

holds [9]. Clearly, the size of G′′ is in O(|G|) and the morphism increases the size of the
grammar and the resulting word by a constant factor. By applying theorem 5.21 we get
the desired running time. �

Remark 5.25. We realise µ′ by replacing each non-terminal X ′′ ∈ N ′′ on any right-hand
sides of a generated word by ε. Likewise we realize µ′′.
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Algorithm 25: AGREEONPATH: Tests if µ1, µ2 agree on a Plandowksi containing
at most 6 Plandwoski edges.

input : path = (X1, X2) . . . (Xn−1, Xn), µ1, µ2,G, T ;
output: true if µ1, µ2 agree on Plandowski paths containing at most 6 edges;

1 if path contains at most 5 Plandowski edges then
2 if path is empty then
3 tree← T (S);

4 else
5 tree← T (Xn);

6 for treepath ∈ tree do
7 let treepath = (Y1, Y2) . . . (Yk−1, Yk);
8 append treepath to path;
9 let E be the set of outgoing edges of Yk in G;

10 for e ∈ E do
11 let e = (Z1, Z2);
12 append the Plandowski edge e to path;
13 if Z2 6= T then
14 append (Z2, T ) to path;

15 G1 ← CONCATENATE(µ1(w(path)));
16 G2 ← CONCATENATE(µ2(w(path)));
17 isEquals← FCEQUALS(G1, G2);
18 if Z2 6= T then
19 remove (Z2, T ) from path;

20 if ¬isEquals then
21 return false;

22 isEquals← AGREEONPATH(path, µ1, µ2,G, T )
23 remove e from the end of path;

24 remove treepath from the end of path;
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6. Equivalence test for STWs and LTWs

6.1. Equivalence test for finite top-down tree automata

The domain of a sequential or linear tree to word transducer is defined by its determin-
istic top-down tree automata i. e. a transducer without any output. The domain is the
tree language which is recognized by the tree automata. We reduce the problem of test-
ing equivalence of deterministic top-down tree automata M1,M2 to the equivalence
problem of deterministic word automata (NFAs).

Definition 6.1 (Paths). Let Σ be a ranked alphabet and t = f(t1, . . . , ti) ∈ TΣ be a tree,
then the paths paths(t) of the tree is a subset of words (Σ ∪ N)∗ defined by:

t = a ∈ Σ rank(a) = 0

a ∈ paths(t)

t = f(t1, . . . , tk) ∈ TΣ 1 ≤ i ≤ k ω ∈ paths(ti)

fiω ∈ paths(t)

The path closure paths-cl(L) of a tree language L ⊂ TΣ is the set of all trees that contain
only paths of trees in L i. e.

paths-cl(L) := {t | paths(t) ⊆ paths(L)}

We call L path-closed if L = paths-cl(L).

Lemma 6.1.1. Given a finite tree automataM, we can construct in O(|M|) a finite word au-
tomataA of sizeO(|M|) over a finite subset of Σ×(N∪{0}) such that L(A) = paths(L(M)).

Proof. Let M = (Σ, QM, QF , δM) be a finite tree automata. Then we construct A =
(Σ′, QA, Q

′
F , Q

′
I , δA) with Σ′ ⊂ (Σ× (N ∪ {0})), Q′I = QF , QA = QM, Q

′
F = Σ0 and the

transition relation δA defined by:

a→ q ∈ δM

q
(a,0)−−−→ a ∈ δA

f(q1, . . . , qk)→ q ∈ δM 1 ≤ i ≤ k

q
(f,i)−−→ qi ∈ δA

q → p ∈ δM
q

ε−→ p ∈ δA

It follows from the construction that L(A) = paths(L(M)). For each rule in δM we
construct a constant number of rules for the NFA and we can construct these rules by
iterating over all rules in δM. Therefore, we can construct A in O(|M|) time. �

If the tree automata M is top-down deterministic, the constructed word automata is
deterministic, too. One can show that the language recognized by a deterministic top-
down tree automata is path-closed [11].
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Theorem 6.2. Given two finite top-down tree automata M1,M2, we can decide L(M1) =
L(M2) in almost O(|M1|+ |M2|) time.

Proof. By lemma 6.1.1, we can construct inO(|M1|+ |M2|) two NFAsA1,A2 such that
L(A1) = paths(L(M1)) and L(A2) = paths(L(M2)). SinceM1 andM2 are top-down
deterministic L(M1) and L(M2) are path-closed i. e. L(M1) = paths-cl(L(M1)) and
therefore

L(M1) = L(M2) ⇐⇒ paths(L(M1)) = paths(L(M2)).

Since Mj is deterministic, there are no ε-rules in Aj and δAj (q, (f, i)) is a function.
Consequently, we can merge all initial states (we may introduce more than one) into
one initial state. It follows that A1 and A2 are deterministic. We apply the algorithm
presented in [29], to solve L(A1) = L(A2) in almostO(|Σ′| · (|QA1 |+ |QA2 |)) = O(|A1|+
|A2|) = O(|M1|+ |M2|) time. �

Remark 6.3. In the construction above we use the notation of bottom-up tree automata.
For receiving top-down tree automata one has to reverse the arrows in the rules and
swap the set of final states to the set of initial states.

Example 6.4. The above deterministic word automata on the right is the result of the
construction from above by converting the underlying tree automaton of the STW M
defined by the rules on the left into the corresponding word automata. q0, q1 are initial
states of the STW and therefore of the underlying top-down tree automata.

q0(f)→ u0q1u1q2u2,

q1(g)→ v0q1v1,

q1(h)→ w0q2w1,

q2(h)→ z0q0z1,

q2(a)→ y0

{q0, q1}start q2 a

(h, 1), (f, 2)

(f, 1)

(g, 1)

(h, 1)

(a, 0)
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6.2. Equivalence test for dN2Ws

6.2. Equivalence test for dN2Ws

In the following section we will discuss the equivalence problem for deterministic
nested word-to-word transducers (dN2Ws). Solving this problem is an intermediate
step for solving equivalence problem for STWs and LTWs. In section 6.3, we will see
how we can transform STWs into dN2Ws in linear time. [52] showed the following

Theorem 6.5 ([52]). The following problem is in PTIME

Input: Given two deterministic N2Ws N1,N2 with the same input Σ and output al-
phabet.

Output: Does JN1K = JN2K hold?

We skip the equivalence test of the domain ofN1,N2 since we check the domains of the
LTWs and STWs. Therefore, we can assume that the domains of the constructed N2Ws
are equal. Nevertheless, if the N2Ws are deterministic, we could test their domains
in polynomial time (see [4]). We will require the notion of co-reachable states of two
N2Ws.

Definition 6.6 (Co-reachable states). Let N1 = (Σ, ∆1, Q1, Γ1, R1, Q1,I , Q1,F ),N2 = (Σ,
∆2, Q2, Γ2, R2, Q2,I , Q2,F ) be two N2Ws. We define the relation Co(N1,N2) ⊆ Q1 ×Q2

by the following properties:

q1 ∈ Q1,I q2 ∈ Q2,I

(q1, q2) ∈ Co(N1,N2)

(q1, q2) ∈ Co(N1,N2) q1
op a/u1:γ1−−−−−−→ p1 ∈ R1 q2

op a/u2:γ2−−−−−−→ p2 ∈ R2

(p1, p2) ∈ Co(N1,N2)

(q1, q2) ∈ Co(N1,N2) q1
cl a/u1:γ1−−−−−−→ p1 ∈ R1 q2

cl a/u2:γ2−−−−−−→ p2 ∈ R2

(p1, p2) ∈ Co(N1,N2)

In [52] the authors describe how we can reduce the problem of the equivalence problem
of N2Ws to the morphism equivalence problem on CFGs. They give a construction for a
context-free grammar containing all successful parallel runs of N1 and N2.

Definition 6.7 (Successful parallel runs [52]). Let t be a tree and Act(t) = {e1, . . . , en}
its traversal actions with e1 < . . . < . . . en. A successful parallel run of N1 and N2 on the
tree t is a word s over the alphabet R = R1 × R2 such that there exist two successful
runs τ1, τ2 of N1 and N2 on t with

s = (τ1(e1), τ2(e1)) . . . (τ1(en), τ2(en)).
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6. Equivalence test for STWs and LTWs

Note that a successful run starting from (q1, q2) and ending in (p1, p2) can only exists if
(q1, p1) and (q2, p2) are contained in Co(N1,N2). Remember that τ1(e) = r, where r is a
rule of N1. Suppose we have a grammar generating all successful parallel runs of N1

and N2 and let µ1, µ2 : R → ∆∗ defined by

µi((r1, r2)) = u, if ri = q
β a/u:γ−−−−→ q′,

then JN1K = JN2K holds if and only if µ1, µ2 agree on the grammar of successful par-
allel runs [52]. The construction of the grammar is given by the proof of the following
lemma.

Lemma 6.7.1 ([52]). For any two N2Ws N1,N2 with the same alphabets there exists a CFG

G such that L(G) is the set of all successful parallel runs of N1 and N2. The grammar can be
constructed inO(|N1|2 · |N2|2 + |QN1 |3 · |QN2 |3) time. It contains at mostO(Co(N1,N2)3) =
O(|QM1 |3 · |QM2 |3) productions.

Proof (sketch). They construct the grammar G = (R, N, S, P ) as follows. The set of
non-terminals is N = {S} ∪ Q2

N1
× Q2

N2
. A non-terminal ((p1, q1), (p2, q2)) is supposed

to produce a parallel run of N1 from p1 to q1 and of N2 from p2 to q2 (reading the same
input). There is only one start symbol S and productions in P are defined as follows:

r1, r
′
1 ∈ RN1

r2, r
′
2 ∈ RN2

r1 = p1
op a/u1:γ1−−−−−−→ q1

r2 = p2
op a/u2:γ2−−−−−−→ q2

r′1 = p′1
cl a/u′1:γ1−−−−−−→ q′1

r′2 = p′2
cl a/u′2:γ2−−−−−−→ q′2

p1 ∈ QI,N1

p2 ∈ QI,N2

q′1 ∈ QF,N2

q′2 ∈ QF,N2

S → (r1, r2)((q1, p
′
1), (q2, p

′
2))(r′1, r

′
2)

r1, r
′
1 ∈ RN1

r2, r
′
2 ∈ RN2

r1 = p1
op a/u1:γ1−−−−−−→ q1

r2 = p2
op a/u2:γ2−−−−−−→ q2

r′1 = p′1
cl a/u′1:γ1−−−−−−→ q′1

r′2 = p′2
cl a/u′2:γ2−−−−−−→ q′2

((p1, q
′
1), (p2, q

′
2))→ (r1, r2)((q1, p

′
1), (q2, p

′
2))(r′1, r

′
2)

p1, p
′
1, q1 ∈ QN1 p2, p

′
2, q2 ∈ QN2

((p1, q1), (p2, q2))→ ((p1, p
′
1), (p2, p

′
2))((p′1, q1), (p′2, q2))

q1 ∈ QN1 q2 ∈ QN2

((q1, q1), (q2, q2))→ ε
�

The first set of productions suppose that both N2Ws start their run using some initial
rules r1, r2 i. e. the right-hand side of r1, r2 is an initial state. Furthermore, we ensure
that they read the same input (op, a) and put some stack symbol γ1, γ2 on the stack.
They produce some output u1 and u2, respectively. After this step N1 is in state q1 and
N2 is in state q2. If the parallel run ever terminates, N1 has to use a rule that removes
γ1 from the stack and reads (cl, a) from the input. N2 has to read the same input and
removes γ2 from the stack. The destination states q′1, q

′
2 of the rules r′1, r

′
2 have to be

final states. One production of the second and first set of productions represents the
parallel outgoing (using (r1, r2)) and incoming (using (r′1, r

′
2)) traversal at a node f ∈ Σ

in the tree t. In between, there has to be a parallel run, that first handles the left most
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6.3. Equivalence test for STWs

child and last handles the right most child of f . Without the third set of productions we
could only generate successful runs accepting paths, displayed above.

f g g a

This changes due to the third set of productions. We may derive a sequence of non-
terminals by starting from the non-terminal ((p1, q1), (p2, q2)). At some point in the
derivation, non-terminals disappear due to the set of productions introduced lastly.

Remark 6.8. We only add any grammar production, in the construction above, if for
each non-terminal ((p1, p

′
1), (p2, p

′
2)), p′1 is reachable from p1 in N1, p′2 is reachable from

p2 in N2 and (p1, p2), (p′1, p
′
2) ∈ Co(N1,N2). This reduces the runtime and the mem-

ory consumption of the construction for many instances. In the last step we delete all
useless non-terminals and productions.

6.3. Equivalence test for STWs

Next we show how we can transform a STW S into a top-down dN2W N such that
JSK = JN K. Since unranked trees comprise a subset of ranked trees, the reduction is
straightforward. Basically, the transformation changes the traversal of the tree from
top-down to pre-order.

Lemma 6.8.1 ([52]). Let S be a STW. We can convert S to a dN2W N with JSK = JN K in
O(|S| · n) time, where n = max{rank(f) | f ∈ Σ}.

Proof (sketch). Let S = (Σ,∆, QS , QI,S , δS) be the STW. First we extend the rank func-
tion to δS in the following way: rank(q(f) → α) = rank(f). Let N = (Σ, ∆, QN , ΓN ,
RN , QI,N , QF,S) be the constructed dN2W, such that

QN = ΓS = {(r, j) | r ∈ δS , 0 ≤ j ≤ rank(r)} ∪ {o, f},

QI,N = {o}, QF,N = {f} and RN consists of the following rules:

q0 ∈ QI,N
r = q0(g)→ u0q1 . . . qnun

o
op g/u0:f−−−−−→ (r, 0)

(r, n)
cl g/ε:f−−−−→ f

r = q(g)→ u0q1 . . . qjuj . . . qnun
r′ = qj(b)→ v0p1 . . . pmvm 1 ≤ j ≤ n

(r, j − 1)
op b/v0:(r,j)−−−−−−−→ (r′, 0)

(r′,m)
cl b/uj :(r,j)−−−−−−−→ (r, j)

�

We have |QN | = O(|δS | · n) = O(|S|) states and |RN | = O(|S|n) rules contained in the
constructed dN2W.
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6. Equivalence test for STWs and LTWs

Example 6.9. Let δS = {r1 = h(q0) → u0q1u1q0u2, r2 = g(q1) → v0q2v1, r3 = a(q2) →
w0, r4 = a(q0)→ y0}, with OI,S = {q0}, then the rules RN are the followings:

r′1 = o
oph/u0:f−−−−−→ (r1, 0), r′2 = (r1, 2)

clh/ε:f−−−−→ f,

r′3 = (r1, 0)
op g/v0:(r1,1)−−−−−−−−→ (r2, 0), r′4 = (r2, 1)

cl g/u1:(r1,1)−−−−−−−−→ (r1, 1),

r′5 = r(r1, 1)
oph/u0:(r1,2)−−−−−−−−→ (r1, 0), r′6 = (r1, 2)

clh/u2:(r1,2)−−−−−−−−→ (r1, 2),

r′7 = (r1, 1)
op a/y0:(r1,2)−−−−−−−−→ (r4, 0), r′8 = (r4, 0)

cl a/u2:(r1,2)−−−−−−−−→ (r1, 2),

r′9 = (r2, 0)
op a/w0:(r2,1)−−−−−−−−→ (r3, 0), r′10(r3, 0)

cl a/v1:(r2,1)−−−−−−−−→ (r2, 1),

Suppose we read the tree t = h(g(a), h(g(a), a))). We get

JSK(t) = u0v0w0v1u1u0v0w0v1u1y0u2u2

and the corresponding successful run of N on t is

s = r′1r
′
3r
′
9r
′
10r
′
4r
′
5r
′
3r
′
9r
′
10r
′
4r
′
7r
′
8r
′
6r
′
2.

Theorem 6.10. Let S1 = (Σ,∆, QS1 , QI,S1 , δS1) and S2 = (Σ,∆, QS2 , QI,S2 , δS2) be two
STWs. We can decide whether S1,S2 are equivalent in

O(n6 · (n · |GL|)2 log(n · |GL|))

time, where n = |S1|3 · |S2|3 and GL is the largest SLP representing an output word that is
contained in the rules of S1,S2.

Proof. We first check in O(|S1| + |S1|) time, if the domains are the same by using
theorem 6.2. However, O(|S1| + |S1|) · Σ) = O(n), since S1,S2 are deterministic. If
the domains coincide, we construct two dN2Ws N1,N2 by using the transformation in
lemma 6.8.1 in O((|S1| + |S2|) · max{rank(f) | f ∈ Σ}) time, otherwise we can return
false.

In the next step we construct the grammar of successful parallel runs given by lemma 6.7.1
inO(|QN1 | · |QN2 | ·Σ + |QN1 |3 · |QN2 |3) = O(n) time. Since the dN2Ws are deterministic,
we can replace |N1|2 · |N1|2 in the equation of lemma 6.7.1 by |QN1 | · |QN2 | ·Σ. Note that
for each q and a ∈ Σ there is at most one rule r with reading (op, a) in both dN2Ws and
one reading rule (cl, a) which fits to the the stack symbol ssy(r). The resulting grammar
G has O(n) productions.

Furthermore, we construct µ1, µ2 defined in 6.7. The size of a grammar of a word gen-
erated by a Plandowski path is inO(n · |GL|), whereGL is the largest SLP representing a
output word contained in a rule of δS1 , δS2 . SinceG hasO(n) productions the statement
follows by using theorem 5.21. �
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6.4. Equivalence test for LTWs

Remark 6.11 (Combinatorial explosion). We don’t know whether the set of non-terminals
of SLPs representing output words are disjoint or not. Therefore, we may have to re-
name all non-terminals in all SLPs beforehand. However, this can easily be done in
O(|S1|+ |S2|). The runtime for the equivalence check of STWs is clearly polynomial but
the polynomial has a large exponent. Large problem instances that has a large variety
of parallel runs requires a very long running time. However, if JS1K = JS2K does not
hold, we might get a quick answer.

6.4. Equivalence test for LTWs

Finally, we have all tools in place to implement an algorithm for solving the equivalence
problem for linear tree-to-word transducers.

Theorem 6.12 ([9]). The following problem is in PTIME.

Input: Given two LTWs L1,L2 with the same input Σ and output ∆ alphabet.

Output: Does JL1K = JL2K hold?

LTWs are from a more general class than STWs. They are non-copying but not necessar-
ily order-preserving i. e. the output might be re-ordered. From the periodicity lemma
(see lemma 5.23.1) we derive that if two LTWs are equivalent, the difference in the order
can’t be too large.

6.4.1. Same-ordered LTWs

Let’s first look at a special case of L1,L2 being same-ordered (see definition 6.14). One
can think of same-ordered in the sense that whenever L1 re-orders the output, L2 does
it in the same way. Intuitively, if two LTWs generate the same output at each node of
an input tree, and additionally re-order their output in the same way, they should be
equal. Fortunately, this was proven to be true by [9]. Therefore, it suffice to ignore
the re-ordering for the equivalence test of same-ordered LTWs i. e. we interpret both
LTWs as STWs. We show that we can test whether two LTWs L1,L2 are same-ordered
in O(|L1| · |L2|) time (see lemma 6.14.1). Consequently, the complexity of solving the
equivalence problem for same-ordered LTWs is equal to the complexity of solving the
equivalence problem for two STWs containing the same rules.

Definition 6.13 (Co-reachable states). Let L1 = (Σ,∆, Q1, Q1,I , δ1), L2 = (Σ, ∆, Q2,
Q2,I , δ2) be two LTWs. We define the relation Co(L1,L2) ⊆ Q1 × Q2 by the following
properties:

q1 ∈ Q1,I q2 ∈ Q2,I

(q1, q2) ∈ Co(L1,L2)
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6. Equivalence test for STWs and LTWs

(q1, q2) ∈ Co(L1,L2)
f(q1)→ u0q

′
1(xσ1(1)) . . . q

′
n(xσ1(n))un ∈ δ1

f(q2)→ v0q
′′
1(xσ2(1)) . . . q

′′
n(xσ1(n))vn ∈ δ2

σ1(i) = σ2(j)

(q′i, q
′′
j ) ∈ Co(L1,L2)

Lemma 6.13.1. Let L1 = (Σ,∆, Q1, Q1,I , δ1),L2 = (Σ,∆, Q2, Q2,I , δ2) be two LTWs. Algo-
rithm 26 Computes Co(L1,L2) in O(|Q1| · |Q2| ·Σ ·max{rank(f) | f ∈ Σ}) = O(|L1| · |L2|)
time.

Proof. For each LTW we keep rules in an appropriate data structure and therefore, sup-
ports ∀i ∈ {1, 2} a mapping Σ×Qi → δi to get access to a rule with a specific left-hand
side in constant time. In each round of the loop, in line 7, we remove one pair from
the heap and put new elements into the heap. However, no pair (q1, q2) will be added
twice. There are at most |Q1| · |Q2| pairs. By using the data structure, one iteration of
the outer loop requires O(Σ · max{rank(f) | f ∈ Σ}) time. Which proves the running
time. The correctness follows by the constructive definition of co-reachable states, since
GETCOREACHABLES realises exactly this recursive construction. �

Algorithm 26: GETCOREACHABLES: Computes the relation Co(L1,L2).

input : STWs L1 = (Σ,∆, Q1, Q1,I , δ1), L2 = (Σ, ∆, Q2, Q2,I , δL2);
output: Co(L1,L2);

1 H ← ∅;
2 Co← ∅;
3 for q1 ∈ Q1,I do
4 for q2 ∈ Q2,I do
5 Co← Co∪(q1, q2);
6 H ← H ∪ (q1, q2);

7 while H 6= ∅ do
8 remove (q1, q2) from the heap H ;
9 foreach rule of the form f(q1)→ u1q

′
1(xσ1(1)) . . . q

′
n(xσ1(n))un do

10 foreach rule of the form f(q2)→ v1q
′′
1(xσ2(1)) . . . q

′′
n(xσ2(n))vn do

11 foreach i ∈ [n] do
12 if (q′σ1(i), q

′′
σ2(i)) 6∈ Co then

13 Co← Co∪(q′σ1(i), q
′′
σ2(i));

14 H ← H ∪ (q′σ1(i), q
′′
σ2(i));

15 return Co;

Definition 6.14 (Same-ordered [9]). Two LTWs L1,L2 are same-ordered if for each pair
of co-reachable states (q1, q2) ∈ Co(L1,L2) and for each symbol f ∈ Σ neither q1 nor q2

have a rule for f , or the permutation for these two rules is identical i. e. σ1 = σ2.
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Lemma 6.14.1. Let L1,L2 be two LTWs. We can decide whether these LTWs are same-ordered
in O(|L1| · |L2|) time.

Proof. In the first step we compute Co(L1,L2) in O(|L1| · |L2|) time. By the assumption
that we can get access to a rule by its left-hand side in O(1), we can check for each
pair (q1, q2) ∈ Co(L1,L2), in O(|Σ| · maxf∈Σ rank(f)) time, whether the same-ordered
condition holds for these pairs or not. If at some point the condition does not hold, we
can report that the LTWs aren’t same-ordered. We just have to check whether for each
symbol the permutations of the two (due to determinism) corresponding rules are the
same i. e. σ1 = σ2. Consequently, the total running time is O(|L1| · |L2| + | Co(L1,L2)| ·
|Σ| ·max{rank(f) | f ∈ Σ}) = O(|L1| · |L2|). �

Lemma 6.14.2. Let L1 = (Σ,∆, Q1, QI,1, δ1) and L2 = (Σ,∆, Q2, QI,2, δ2) be two same-
ordered LTWs. We can decide whether L1,L2 are equivalent in

O(n6 · (n · |G|)2 log(n · |GL|))

time, where n = (|L1|3 · |L2|3) and GL is the largest SLP representing an output word that is
contained in the rules of L1,L2.

Proof. Follows directly from the fact that we can interpret these LTWs as STWs com-
bined with lemma 6.14.1 and theorem 6.10. �

6.4.2. Earliest LTWs

The earliest form of STWs was introduced in [38] and extended to LTWs by [9]. Trans-
forming STWs into their earliest form and minimizing them gives us a canonical form
which leads to the Myhill-Nerode theorem for the class of transformations definable
with STWs. However, the transformations may costs us an exponential blow-up in the
size of the output word of a rule or the numbers of states which we have to avoid.
Furthermore, we will see that the earliest form does lead directly to a normal form for
LTWs. However, with a little additional work we can overcome this problem.

Definition 6.15 (Earliest STW and LTW [38]). A linear or sequential tree-to-word trans-
ducer is earliest if and only if the following two conditions are satisfied:

(i) for every state q that is not an initial state we have lcp(Lq) = lcs(Lq) = ε,

(ii) for every rule f(q)→ u0q1 . . . qnun ∈ δ and 1 ≤ i ≤ n we have lcp(Lqiui) = ε.

Intuitively, (i) ensures that no factor of the output can be pushed up and (ii) ensures that
no factor can be pushed left in the traversal [38]. Suppose lcp(Lq) 6= ε. This means that
there exists a word that is the prefix of each word generated by the state q recognizing
any tree t ∈ dom(q) i. e. w v JLK(t). Consequently, w does not depend on the input tree
t and therefore, we could replace each occurrence of q in any right-hand side of L by
wq and change L in such a way that lcp(Lq) = ε. The following key lemma shows that
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6. Equivalence test for STWs and LTWs

for two equivalent earliest LTWs the order of rules, directly accessible from equivalent
states, can’t differ too much.

Lemma 6.15.1 (Key lemma [9]). Let L and L′ be two earliest LTWs. Let q be a state of L and
q′ be a state of L′ such that JLKq = JL′Kq′ . Let

q(f)→ u0q1(xσ(1)) . . . qn(xσ(n))un

q′(f)→ v0q
′
1(xσ′(1)) . . . q

′
n(xσ′(n))vn

be two rules in L and L′, receptively, i the first index such that σ(i) 6= σ′(i), and j such that
σ(j) = σ′(i). Then for k such that i ≤ k ≤ j, all Lqk are periodic of the same period and for k′

such that i ≤ k′ < j, uk′ = ε. Moreover, we have JL′Kq′i = JLKqj

Proof. Since the LTWs are earliest, we get the following situation

Lqiui . . . Lqjuj . . . Lqnun = Lq′ivi . . . Lq′j′
vj′ . . . Lq′nvn (6.1)

such that σ(i) = σ′(j′) and σ(j) = σ′(i). Suppose Lq′i = {ε}, then we could change
the order of the states such that σ(i) = σ(j). So suppose there is a word ω ∈ Lq′i with
ω 6= ε. Since σ(i) 6= σ′(i), the languages are generated by accepting different subtrees of
a input tree and therefore, it follows that

ω v Lqi or Lqi v ω. (6.2)

Hence, ∃ω′ ∈ Lq′i that is the prefix of each word in Lq′i . By the earliest condition we have
lcp(Lq′i) = ε, thus ε ∈ Lq′i . Since ε ∈ Lqi , we get that

ω v ui or ui v ω. (6.3)

Assume ui 6= ε. By using eq. (6.3) and the fact that lcp(Lqi \ {ε}) 6= ε (see eq. (6.2))
we would get lcp(Lqiui) 6= ε which can not be the case since L is in earliest normal
form. Assume now for all l′ with i ≤ l′ ≤ l < j, ε ∈ Lq′l . Let’s look at Lql+1

. By the re-
ordering we get that the languages Lqi . . . Lql+1

are independent from Lq′i . Furthermore,
we know that ∀i ≤ l′ ≤ l ul′ = ε holds. The situation is the following

ε ε . . .Lql+1
ul+1 . . . Lqjuj . . . Lqnun = Lq′ivi . . . Lq′j′

vj′ . . . Lq′nvn ⇐⇒

Lql+1
ul+1 . . . Lqjuj . . . Lqnun = Lq′ivi . . . Lq′j′

vj′ . . . Lq′nvn

Which is the same situation as shown in eq. (6.1). Which implies that ε ∈ Lql+1
and

ul+1 = ε. If we consider the languages Lq′l for i ≤ l ≤ j′, the argument is symmetric.
Overall we get

∀l, i ≤ l ≤ j : ε ∈ Lql ∧ ul = ε

∀l, i ≤ l ≤ j′ : ε ∈ Lq′l ∧ vl = ε.
(6.4)

Now we fix an input tree t = f(t1, . . . , tn) and we look at the part of the word generated
by the rules i. e.

JLKqi(tσ(i))uiJLKqi+1(tσ(i+1)) . . . JLKqi(tσ(n))un =

JL′Kq′i(tσ′(i))viJL
′Kq′i+1

(tσ′(i+1)) . . . JL′Kq′
j′

(tσ′(j′))vj′ . . . JL′Kq′i(tσ′(n))vn
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We can replace the subtree tσ(i) = tσ′(j′) by any other tree t′ ∈ dom(qi) = dom(q′j′) and
get for all these subtrees

JLKqi(t
′)uiJLKqi+1(tσ(i+1)) . . . JLKqi(tσ(n))un =

JL′Kq′i(tσ′(i))viJL
′Kq′i+1

(tσ′(i+1)) . . . JL′Kq′
j′

(t′)vj′ . . . JL′Kq′i(tσ′(n))vn

which implies that for all these trees t′ we have

|JLKqi(t
′)| = |JL′Kq′

j′
(t′)|.

By eq. (6.4), there are trees generating the following languages:

u0Lq1 . . . Lqi−1ui−1Lqi . . . Lqnun =

v0Lq′1 . . . Lq′i−1
v′i−1Lq′

j′
. . . Lqnun

i. e. we choose for tl ∈ dom(q′l) such that JL′Kq′l(tl) = ε for all i ≤ l < j′. Furthermore,
we have vk = uk and Lqk+1

= Lq′k+1
for all 0 ≤ k < i. If we look at one word we get

wz = wz′ (6.5)

with z ∈ Lqi and z′ ∈ Lq′
j′

. Since |z| = |z′|, z = z′ follows and therefore, we get
∀t ∈ dom(qi) = dom(q′j′) : JLKqi(t) = JL′Kq′

j′
(t) which is equal to

JLKqi = JL′Kq′
j′
.

By symmetry we get
JLKqj = JL′Kq′i .

Again we fix for all l with i ≤ l ≤ j and for all l′ with i ≤ l′ ≤ j′, tl ∈ dom(ql), tl′ ∈
dom(q′l′) such that JLKql(tl) = ε and JL′Kq′

l′
(tl′) = ε. This allows us to isolate certain

languages. We can deduce that for all w ∈ Lqi = Lq′
j′

and w′ ∈ Lqj = Lq′i

ww′ = w′w

which implies by using lemma 5.23.1 thatLqi andLqj are periodic with the same period.
We can further follow that for all l with i ≤ l ≤ j, Ll are periodic with the same
period. �

The lemma says that, due to the periodicity of the languages, we can change the order
of states causing difference in the order of a rule for a state q, q′ with JLKq = JLK′q with-
out changing the output language. Furthermore, only periodic languages can cause
order difference in equivalent earliest LTWs. This means we can assume that the rules
of equivalent states in two earliest LTWs are same-ordered [9]. By using the earliest
property we even get the following theorem.
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Theorem 6.16 ([9]). Let L and L′ be two equivalent earliest LTWs, q be a state of L, q′ be a
state of L′ and (q, q′) ∈ Co(L,L′), then JLKq = JL′Kq′ .

If two equivalent LTWs are in earliest normal form and they are not same-ordered, their
order can only differ by periodic or erasing states i. e. states q with Lq = {ε}. We could
solve the equivalence problem for LTWs by the following steps:

1. We transform both LTWs into earliest normal from.

2. We re-order periodic and erasing states by applying lemma 6.15.1.

3. We test if both LTWs are same-ordered. If this does not hold, we can report that
they are not equals. Otherwise, we use lemma 6.14.1 to test if they are equivalent.

However, the transformation into earliest normal form may cost us an exponential
blow-up in the size of the LTWs. Fortunately, in a non-earliest LTW the correspond-
ing states might not be periodic but they have to have a somehow weaker property
called quasi-periodicity.

Definition 6.17 (Quasi-periodic languages and states [9]). A languageL is quasi-periodic
on the left (respectively on the right) of handle w and period u if L ⊆ w(u)∗ (respectively
L ⊆ (u)∗w). A language is quasi-periodic, if it is quasi-periodic on the left or on the
right. L is proper quasi-periodic, if it is quasi-periodic and not periodic. A state q is
quasi-periodic, if and only if Lq is quasi-periodic. Furthermore, qu with u ∈ ∆∗ is quasi-
periodic if and only if Lqu is quasi-periodic.

[9] showed that it is sufficient to replace step 1 by ensuring that any proper quasi-
periodic state is earliest. Furthermore, they showed that this transformation is in PTIME

by presenting the construction steps. We followed their construction and implemented
each step by combining all algorithms we already discussed.

6.4.3. LTWs in partial normal form

In [9] the authors defined the so called partial normal form. Intuitively, a LTW is in
partial normal form after applying the three steps above. However, one have to define
the exact re-ordering such that both LTWs are same-ordered, if they are equivalent.

Definition 6.18 (Partial normal form [9]). We say that a LTW is in partial normal form,
if

(i) it contains no proper quasi-periodic states, (i. e. proper quasi-periodic states will
be transformed to being earliest by pushing the handle up)

(ii) for each f(q)→ u0q1(xσ(1)) . . . qn(xσ(n))un if Lqi = {ε} then for all j with i ≤ j ≤ n
we have Lqj = {ε} and uj = ε. (erasing states are at the rightmost position of a
rule and they are ordered)
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(iii) if qi(xσ(i))uiqi+1(xσ(i+1)) is part of a rule and LqiuiLqi+1 is quasi-periodic then we
have σ(i) < σ(i+ 1) (intuitively, we push the handle to the left).

Lemma 6.18.1 ([9]). Let L and L′ be two LTWs. If L and L′ are equivalent and in partial
normal form then they are same-ordered.

To solve the equivalence problem for two arbitrary LTWs, we reduce the problem to
the case of same-ordered LTWs by transforming both LTWs into LTWs in partial normal
form. By lemma 6.18.1 the resulting LTWs are same-ordered and we can apply 6.14.2. It
is essential that we can test, if a state is quasi-periodic. Surprisingly, the quasi-periodic
test and the algorithm for replacing quasi-periodic states are almost the same. In the re-
maining part of this chapter we describe the construction of the partial normal form.

6.4.4. Transforming LTWs into partial normal form

Let ρn(u) = ρln(u) realises the right to left shift of a word v that is a prefix of u defined
by definition 3.10 i. e. ρln(u) = v−1uv with |v| = n. We can extend this operation to work
with n > |u| by ρ′n(u) = ρ(n mod |u|)(u). For the rest of the chapter we write ρn instead
of ρ′n. Note that the left to right shift of a suffix of size n is equal to ρ|u|−n(u) = ρrn[u].
We already describe in algorithm 9 how we can perform a shift for a fully-compressed
word in O(|G|) where G is the grammar of the SLP representing the word.

Definition 6.19 (Shift of a period [9]). If two states q1, q2 are of period u = u1u2 and
u′ = u2u1, respectively, then we note the shift in their period by shift(q1, q2) = |u1|.

Example 6.20. Let us look to a context-free grammarGwhich is the grammar produced
by some LTW defined by the productions on the left. In the following table you can
find the languages, the period, the handle and the shift with respect to S for all non-
terminals contained in the grammar.

S → abXabcZb, Z → aV,

X → cabX, X → c,

V → V bca, V → bca

Language Period Handle shift(S, x)

LS(G) = ab(cab)∗ cab ab 0
LX(G) = (cab)∗c abc c 1
LZ(G) = a(bca)+ bca a 2
LV (G) = (bca)+ bca ε 2

If we only have the information of S being quasi-periodic with period cab, then we can
follow, just by looking at the production S → abXabcZb, that all words in LX(G) have
to end with c and all words in LZ(G) have to start and end with a. Otherwise, S would
not be of period cab.

The example 6.20 above gives the intuition of the following two lemmas stated and
proved in [9]. Together they gave us an algorithm to transform a quasi-periodic state
into a state that is earliest.
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Lemma 6.20.1 ([9]). Let q be a state that is quasi-periodic on the left with period u and let
q(f) → u0q1(xσ(1)) . . . qn(xσ(n))un be a rule for q, then each qi is either quasi-periodic of
period ε or ρshift(q,qi)[u], where shift(q, qi) ≡ |uiwi . . . wnun| (mod |u|) and wi is the smallest
word of Lqi .

Remark 6.21. If q is quasi-periodic on the right

shift(q, qi) ≡ |u| − |u0w0 . . . wi−1ui−1| (mod |u|) .

Note, that we defined the shift operation ρn(u) for n > |u| using the modulo operation.
Thus, we can forget about the modulo in the calculation of the shift. However, it might
be useful to keep numbers small.

Lemma 6.21.1 ([9]). If q is a quasi-periodic state with period u of a LTW L and q′ is accessible
from q in L, then q′ is quasi-periodic with period ε or a shift of u. Moreover, we can calculate
the shift(q, q′) in polynomial time.

The intuition should be clear by looking at example 6.20. For a complete proof we refer
to [9]. Let us assume q is quasi-periodic on the left i. e. Lq ⊆ wu∗. Lemma 6.20.1 and
6.21.1 tells us how we can transform q into a state qe that is periodic. We remove the
handle from Lq. We do this by pushing all lcp(qi) of states qi in a rule of q′ accessible
from q up and to the left and remove the prefix lcp(q′) from the pushed factor. Remem-
ber, q is quasi-periodic and q′ is quasi-periodic with period ε or a shifted version of u.
Consequently, the generated word is lcp(q′) or lcp(q′)w where w is a shifted version of
u. Since we can calculate the shift, we can transform w into u. All these transformations
do not change JSK if q is quasi-periodic on the left.

Example 6.22. Let us look back to example 6.20 to the ruleX → cabX . Let’s assume we
transform S such that we replace it by some non-terminals that are earliest. Therefore,
we would apply the following transformation on the rule X → cabX :

X → Xρrshift(S,X)[cab lcp(LX(G)) lcp(LX(G))−1] ⇐⇒

X → Xρr1[cabcc−1] ⇐⇒
X → Xρr1[abc] ⇐⇒
X → Xcab.

The transformation for the rule V → V bca would be the following

V → ρlshift(S,V )[lcp(LV (G))−1bca lcp(LV (G))]V ⇐⇒

V → ρl1[(bca)−1bcabca]V ⇐⇒
V → ρl1[bca]V ⇐⇒
V → cabV.

If q is not quasi-periodic, shift(q, q′) is not defined. However, for the quasi-periodic
test we require a functions shiftl(q, q

′), shiftr(q, q
′) that are defined for all pairs of states,
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computable without knowing that q is quasi-periodic and coincident with shift(q, q′)
such that shiftl(q, q

′) = shift(q, q′), if q is quasi-periodic on the left and shiftr(q, q
′) =

shift(q, q′) if q is quasi-periodic on the right. In [9] the authors introduce the so called
mock-shifts shiftl, shiftr. We use a slightly different definition than [9], replacing lcp(qi)
by the smallest word of Lqi .

Definition 6.23 (Mock shift). Let L = (Σ,∆, Q,QI , δ) be a LTW. We define shiftl, shiftr :
Q×Q→ N as the left to right and the right to left mock-shift, respectively. So let us denote
wi as the smallest word of Lqi . The following defines the mock-shifts:

q ∈ Q
0 ∈ shift′l(q, q), 0 ∈ shift′r(q, q)

f(q)→ u0q1(xσ(1)) . . . qn(xσ(n))un

|uiwi . . . wnun| ∈ shift′l(q, qi),

|u0w0 . . . ui−1| ∈ shift′r(q, qi)

n ∈ shift′l(q1, q2) m ∈ shift′l(q2, q3)

shift′l(q1, q3) = n+m

n ∈ shift′r(q1, q2) m ∈ shift′r(q2, q3)

shift′r(q1, q3) = n+m

shiftl(q, q
′) = min(shift′l(q, q

′)) and shiftr(q, q
′) = min(shift′r(q, q

′)).

Remark 6.24. If q is quasi-periodic, the smallest word in lcp(Lq) = lcs(Lq) = wq where
wq is the smallest word in Lq.

Lemma 6.24.1. Let L be a LTW and q be a state of the LTW. We can compute shiftl(q, q
′) and

shiftr(q, q
′) for all q′ accessible from q in O(|L|) time.

Proof. For a rule r = f(q)→ u0q1 . . . qnun ∈ δ we can compute shift′l(q, qi) inO(| rhs(r)|)
by using algorithm 27. Therefore, we can compute this shift for each rule in O(|L|)
time. Starting from q we can compute all reachable, similar to the calculation of reach-
ables for a context-free grammar. During this calculation we can inductively compute
shiftl(q, q

′) by using the pre-calculated mock shifts shift′l. If shiftl(q, q
′) is already de-

fined we take the minimum. Similar to context-free grammars, the computation of all
reachables takes at most O(|L|) time. Consequently the total running time is O(|L|).
The proof for computation of the right to left shifts i. e. shiftr(q, q

′) is symmetric. �

In the following we describe an algorithm presented in [9] that tests whether a state q is
quasi-periodic on the left. Furthermore, if q is quasi-periodic on the left the algorithm
transforms the LTW into an equivalent LTW containing a replacement qe such that qe is
periodic. Furthermore all states q

′e accessible from qe are periodic as well i. e. the new
LTW has one less quasi-periodic state.

Lemma 6.24.2 ([9]). Let q be a state in a LTW L and T q be constructed by algorithm 28. Then
q is quasi-periodic on the left if and only if JLKq = JT qK and Lqe is periodic i. e. if the test in
line 15 does not fail.
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Algorithm 27: MOCKSHIFTOFRULE: Computes all shifts for a rule.

input : f(q)→ u0q1 . . . qnun ∈ δ;
output: shift′l(q, qi) ∀i ∈ [n];

1 for i = n . . . 1 do
2 if i 6= n then
3 shift← shift+ |wi|;
4 shift← shift+ |ui|;
5 shift′l(q, qi)← shift;

6 return shift′l(q, qi);

The first direction of the proof ensures that algorithm 28 replaces the state q by periodic
states if it is quasi-periodic without changing JLK. The other direction is easy to see. Let
us assume JLKq = JT qK = wqJT q

eK. If qe is periodic then JLKq is quasi-periodic.

Remark 6.25. We can use algorithm 28 to test whether Lqu is quasi-periodic on the
left. We replace in line 10 shiftl(q, q

′) by shiftl(q, q
′) + |u|. In line 13 we replace q by

wqu. Furthermore, we replace qu in any right-hand side in r ∈ δ by wquqe (see line 16).
Note that we delete q only if all occurrences of q were replaced i. e. q becomes useless.
Additionally, we can use algorithm 28 to test whether Lq is quasi-periodic on the right
(see algorithm 34). Before shifting, we remove the suffix v of length |w′| instead of
the prefix from u0w1 . . . wnun. In line 10 we replace shiftl(q, q

′) by shiftr(q, q
′) and we

prepend u at the end of the rule. In line 13 we append uq′wq at the end of the rule.
Furthermore, we replace q in any right-hand side in r ∈ δ by qewq (see algorithm 34).

Lemma 6.25.1. Let L = (Σ,∆, Q,QI , δ) be a LTW. By using algorithm 28 we can construct
a LTW L′ containing no proper quasi-periodic states with JLK = JL′K in

O(|Q| · n6 · (n · |GL|)2 log(n · |GL|))

time, where n = |L|6 and GL is the largest grammar of the set of grammars representing fully-
compressed output words in L. L′ is of size O(|Q| · L).

Proof. First note that n is an upper bound for the size of the constructed context-free
grammar generating the language of all parallel successful runs of Lq, T q. The size of
Lq, T q is clearly in O(|L|). Furthermore, they are same-ordered. Consequently, algo-
rithm 28 can test whether a state of L is quasi-periodic inO(n6 · (n · |GL|)2 log(n · |GL|))
time by applying lemma 6.14.1. Testing whether Lqe is periodic requires less time, or
more precise it requires O(m6 · (|L| · |Q|)) time, where m is the numbers of rules in L
applying theorem 5.24. After |Q| application of the algorithm, there are no more quasi-
periodic states in L, since for each call we remove one quasi-periodic state or we mark
an unmarked state as being not quasi-periodic. Furthermore, all added states are peri-
odic [9]. Note that we change the output, mostly due to concatenation, thus the size of
GL may increase. However, the size of the grammar of the fully-compressed words on
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Algorithm 28: ISQPONTHELEFT: Tests whether the state q is quasi-periodic on
the left and transforms q into a periodic state qe, if this is true.

input : LTW L = (Σ,∆, Q,QI , δ), q ∈ Q;
output: the result of the quasi-periodic test;

1 δq ← ∅;
2 create a fresh state qI ;
3 wq ← the smallest word of Lq;
4 Qacc ← states accessible from q;
5 foreach q′ ∈ Qacc do
6 add a copy q

′e to Qq;

7 foreach r = q′(f)→ u0q1(xσ(1)) . . . qn(xσ(n))un ∧ q′ ∈ Qacc do
8 w′ ← the smallest word of Lq′ ;
9 v ← the prefix of u0w1 . . . wnun of size |w′|;

10 u← ρshiftl(q,q′)[v
−1u0w1 . . . wnun];

11 δq ← δq ∪ q
′e(f)→ uqe1(xσ(1)) . . . q

e
n(xσ(n));

12 if q′ = q then
13 δq ← δq ∪ qI(f)→ wquq

e
1(xσ(1)) . . . q

e
n(xσ(n));

14 T q ← (Σ,∆, Qq, {qI}, δq);
15 if Lqe is periodic ∧ JLKq = JT qK then
16 replace q in any right hand-side in r ∈ δ by wqqe;
17 δ ← δ ∪ {r ∈ δq | lhs(q) 6= qI};
18 Q← Q ∪Qq;
19 return true;

20 else
21 return false;

which we apply FCEQUALS do not increase, since these words were created due to the
same concatenation. We just concatenate earlier and for many terminals (r1, r2) of the
grammar of successful runs we have µi(r1, r2) = ε. The proof for the correctness can be
found in [9]. We use almost the same algorithm presented in [9]. �

Remark 6.26. We use the exact same algorithm described in [9] with the exception, that
we have no axiom. Note that we use a slightly different definition of STWs and LTWs.

We now give a very informal description of the algorithm for transforming an arbitrary
LTW L into its partial normal form.

Remark 6.27 (Algorithm 29). We replace all quasi-periodic states in L (see line 1) by
applying algorithm 28. If q was identified as being quasi-periodic on the left we can
proceed with the next state. Otherwise, we apply the adapted version of algorithm 28
to test quasi-periodicity on the right (and replace the state if this is true). In line 3 we
push erasing states to the right such that if Lqi = {ε} then Lqi+1 = {ε} and ui = ε.

95



6. Equivalence test for STWs and LTWs

Algorithm 29: TOPARTIALNORMALFORM: Transform an LTW into its partial nor-
mal form.

input : LTW L = (Σ,∆, Q,QI , δ);
1 replace all quasi-periodic states in L;
2 foreach rule in the L do
3 push all erasing states to the right and order them such that for all positions

i < j ⇒ σ(i) < σ(j);

4 δ′ ← δ;
5 foreach r = f(q)→ u0q1(xσ(1)) . . . qn(xσ(n))un ∈ δ′ do
6 foreach i← n− 1 . . . 1 do
7 replace all qiui with Lqiui is quasi-periodic on the left by periodic states

following remark 6.25;

8 foreach f(q)→ u0q1(xσ(1)) . . . qn(xσ(n))un ∈ δ do
9 search for the largest k such that Lqi , . . . , Lqi+k are period with the same

period and ui = . . . = ui+k = ε;
10 re-order qi(xσ(i)), . . . , qi+k(xσ(i+k)) such that σ(i) < . . . < σ(i+ k);

We then reorder these states according to definition 6.18 (ii). To realise line 7 we use
an adapted version of algorithm 28 following remark 6.25. Note that we only consider
occurrences of qiui if Lqiui is quasi-periodic on the left.

By using the following lemma we can improve the performance of algorithm 29.

Lemma 6.27.1. Let L = (Σ,∆, Q,QI , δ) be a LTW. Let q ∈ Q be a state with Lq is not proper
quasi-periodic. Lqv is quasi-periodic on the left, if and only if Lq is periodic of period u and v is
a prefix of u or v = ukw such that w is a prefix of u.

Whenever the periodicity test for a state q is positive we store the pair (qe, v) where v
is the period of Lqe . For testing whether qu is periodic, we first check if there is a pair
(q, v). If there is such a pair, we can apply lemma 6.27.1 instead of the expensive test in
line 15 in algorithm 28.

Lemma 6.27.2. Let L = (Σ,∆, Q,QI , δ) be a LTW and q ∈ Q. If we know that Lq is periodic
with period u we can test in

O((|Gv +Gu|)2 log(|Gv +Gu|))

if Lqv is quasi-periodic on the left, where Gv is the grammar of the fully-compressed word v and
Gu is the grammar of the fully-compressed word of u.

Proof. First, we delete the suffix w of length (|v| mod |u|) from v receiving v′ i. e. v =
v′w. Then, we test by using FCEQUALS if v′u = uv′ i. e. v′ and u are periodic with
the same period. If this is true, we use FCPMATCHING to test if the pattern w occurs at
position 1 in u. If this is the case, we know that v = ukw for some k ≥ 0 and w is a prefix
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of u, thus Lqv is quasi-periodic on the left. In any other case, we know that Lqv is not
quasi-periodic on the left. The manipulations on the words can be done in linear time
(see chapter 3). Testing equality of fully-compressed words and the pattern matching
can be done in O((|Gv +Gu|)2 log(|Gv +Gu|)) by using theorem 4.27 and 4.32. �

Lemma 6.27.3. Let L = (Σ,∆, Q,QI , δ) be a LTW. By using algorithm 29 we can transform
L into L′ that is in partial normal form with JLK = JL′K in

O((|Q|+ p) · n6 · (n · |GL|)2 log(n · |GL|)) where p =
∑

q(f)→α∈δ
rank(f)>1

(rank(f)− 1) ,

n = |L|6 and GL is the largest grammar of the set of grammars representing fully-compressed
output words in L. The size of the constructed transducer is in O(|L|2).

Proof. For the correctness proof we refer to [9]. To avoid confusion let δ′ be the set of
rules of L′. At the beginning of the algorithm δ′ = δ. We gave an upper bound for
the elimination of all proper quasi-periodic states (see lemma 6.25.1). All operations
inside the while-loop except the test for quasi-periodicity can be ignored if we look
at the runtime, since these operation requires at most O(|L|) time. The test for quasi-
periodicity on the left forLqu is cheap, if we know thatLq is periodic (see lemma 6.27.2).
Whenever we add new rules to δ′, they contain only states that are periodic. Therefore,
we have to use the expensive test for quasi-periodicity i. e. line 15 in algorithm 28, at
most for each occurrence of a state in a rule ofL containing at least two states (see line 6)
i. e.

p =
∑

q(f)→α∈δ
rank(f)>1

(rank(f)− 1)

and twice for each state in Q (see line 1). Whenever we delete an occurrence of qu
we add at most |δ| rules to δ′. All these rules do not contain any qu with u 6= ε (by
construction of these rules in algorithm 28). Thus, we don’t have to consider these
rules again and after at most p applications of algorithm 28 there are no more positions
i such that qiui is quasi-periodic on the left.

During the algorithm we add at most (|Q|+ p) times the rules contained in δ to L′ thus,
|L′| = O((p+ |Q|) · |L|) = O(|L|2). �

Theorem 6.28. Let L1,L2 be two LTWs. By using algorithm 30 we can decide whether JL1K =
JL2K holds in

O(n6 · (n · |GL|)2 log(n · |GL|))

time, where n = |L1|6 · |L2|6 and GL is the largest grammar representing an output word.

Proof. Using lemma 6.27.3 we can construct for Li an equivalent LTWs L′i that is in
partial normal form. The size of L′i is quadratic in the size of Li. We can do this con-
struction inO(|Li| ·(m6 ·(m · |GL|)2 log(m · |GL|)) = O(n6 ·(n · |GL|)2 log(n · |GL|)), where
m = |Li|6. We can test whether L′1 and L′2 are same-ordered. If this does not hold, we
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6. Equivalence test for STWs and LTWs

Algorithm 30: LTWEQUALS: Test whether two LTWs are equivalent.

input : LTWs L1,L2;
output: true if L1,L2 are equivalent, otherwise false;

1 if dom(L1) 6= dom(L2) then
2 return false;

3 else if ISSAMEORDERED(L1,L2) then
4 return STWEQUALS(L1,L2);

5 else
6 TOPARTIALNORMALFORM(L1);
7 TOPARTIALNORMALFORM(L2);
8 if ISSAMEORDERED(L1,L2) then
9 return STWEQUALS(L1,L2);

10 else
11 return false;

can report that JL1K 6= JL2K. Otherwise, we test for equivalence of same-ordered LTWs
using lemma 6.14.2. By the lemma this requires

O(n6 · (n · |GL|)2 log(n · |GL|))

time. Since JL′1K, JL′2K are same-ordered we have

JL′1K = JL′2K ⇐⇒ JL1K = JL2K

which finishes the proof. �
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7. Results and Examples

In this section we give running times for our implementation and explain the algorithm
of the last section for a complete example. We used a MacBook Pro with 3.1 Ghz Intel
Core i7 (processor) and 16 GB 1867 MHz DDR (memory).

7.1. Performance of the recompression algorithm

Since we extensively use the recompression algorithm, we test it for large instances
separately. We construct the following SLP Gk = (∆, N,X1, P ) defined by the following
productions:

X1 → aX2bX2c

X2 → aX3bX3c

. . .

Xk−1 → aXkbXkc

Xk → d.

∆ = {a, b, c, d}, |P | = |N | = k, the size of the grammar is in O(k) and the size of
the words ωGk in Ω(2k). We compute the running time of the recompression i. e. of
FCEQUALS for Gt = Gp.
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Figure 7.1.: Running time in milliseconds of the recompression applied on two gram-
mars equals Gk for various k ∈ [500].



7. Results and Examples

7.2. LTW equality test example

We will now give a short example of an equality test for LTWs inspired by the example
presented in [9]. Consider a LTW L = (Σ,∆, Q,QI , δ) where QI = {q0},Σ = {f, g, h}
and f, g, h have the following rules:

q0(f)→ h q1(x3) a q2(x2) b q3(x1)

q1(g)→ ell q4(x1)

q2(g)→ q2(x1) bca q2(h)→ bca

q3(g)→ c q5(x1)abend

q4(g)→ q4(x1) q4(h)→ o

q5(g)→ abc q5(x1) q5(h)→ ε

Let the second LTW L′ = (Σ,∆, Q′, Q′I , δ
′) where QI = {q0} be defined by the following

rules:
q′0(f)→ helloa q′1(x2) q′2(x1) cabend q′3(x3)

q′1(g)→ bca q′1(x1) q′1(h)→ b

q′2(g)→ cab q′4(x1)

q′3(g)→ q′5(x1)

q′4(g)→ cab q′4(x1) q′4(h)→ ε

q′5(g)→ q′5(x1) q′5(h)→ ε

In the first step we test if dom(L) = dom(L′), which is the case. We furthermore test if
they are same-ordered. In that case we could apply the equality test for STWs. How-
ever this does not hold since (q0, q

′
0) ∈ Co(L,L′) but their rules are not same-ordered.

Consequently, we transform both LTW into LTWs in partial normal form. We identify
states q1, q2, q3, q4, q5, q

′
1, q
′
2, q
′
3, q
′
4, q
′
5 as quasi-periodic. Let’s look for example at state q3.

Lq3 = (cab)+end ⊆ (cab)∗end i. e. quasi-periodic on the right. Therefore the period is
u = cab. We replace q3 by introducing the following rules:

qe3(g)→ qe5(x1) ρrshiftr(q3,q3)[cabend lcs(Lq3)−1]→ qe5(x1) ρr0[cabend(cabend)−1]→ qe5(x1)

qe5(g)→ qe5(x1) ρrshiftr(q3,q5)[abc lcs(Lq5)−1]→ qe5(x1) ρr1[abc(ε)−1]→ qe5(x1) cab

qe5(h)→ ε.

Then we can replace q3 by (qe3 lcp(Lq3)) = (q3 cabend) and we can delete q5 since it
became unreachable. In the next step the algorithm may consider q1. Lq1 = {ello} thus
q1 is periodic and we push the factor to the left and creates the following rules:

qe1(g)→ ρlshiftl(q1,q1)[lcp(Lq1)−1ello] qe4(x1)→ ρl0[(ello)−1ello] qe4(x1)→ qe4(x1)

qe4(g)→ qe4(x1)

qe4(h)→ ρlshiftl(q1,q4)[lcp(Lq4)−1o]→ ρl1[(o)−1o]→ ε.
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7.2. LTW equality test example

Then we can replace q1 by (qe1 lcp(Lq1)) = (qe1 ello) and we can delete q4 since it became
unreachable. In the last step we transform q2 into periodic states. Lq2 = (bca)+ thus q2

is periodic and we introduce the following rules such that q2 becomes earliest:

qe2(g)→ ρlshiftl(q2,q2)[lcp(Lq2)−1bcabca] qe2(x1)→ ρl0[(bca)−1bcabca] qe2(x1)→ bca qe2(x1)

qe2(h)→ ρlshiftl(q2,q2)[lcp(Lq2)−1bca])→ ρl0[(bca)−1bca]→ ε.

Then we replace q2 by qe2 lcp(Lq2) = qe2 bca. Note that we could had also identify q2

as quasi-periodic on the right. After this first step of the algorithm there are no proper
quasi-periodic states in L. The rules of the transducer are

q0(f)→ hello qe1(x3) a qe2(x2) bcab qe3(x1) cabend

qe3(g)→ qe5(x1)

qe5(g)→ qe5(x1) cab qe5(h)→ ε

qe1(g)→ qe4(x1)

qe4(g)→ qe4(x1) qe4(h)→ ε

qe2(g)→ bca qe2(x1) qe2(h)→ ε

We do the whole replacement of quasi-periodic states for L′ too and receive the follow-
ing rules:

q
′e
0 (f)→ helloa q

′e
1 (x2)bcab q

′e
2 (x1) cabend q

′e
3 (x3)

q
′e
1 (g)→ q

′e
1 (x1) bca q

′e
1 (h)→ ε

q
′e
2 (g)→ q

′e
4 (x1)

q
′e
3 (g)→ q

′e
5 (x1)

q
′e
4 (g)→ cab q

′e
4 (x1) q

′e
4 (h)→ ε

q
′e
5 (g)→ q

′e
5 (x1) q

′e
5 (h)→ ε

In the second step we re-order states generating the empty language i. e. {q1, q4} in L
and {q′e3 , q

′e
5 } in L′. Therefore we only change the rule q0(f) as follows:

q0(f)→ helloa qe2(x2) bcab qe3(x1) cabend qe1(x3)

In the next step we identify and eliminate qu if Lqu is quasi-periodic on the left but not
for the right most state of a rule. In our example we only have to look at q0(f), q′0(f). To
avoid confusion we call the new introduced states qr. We identifyLq2bcab = (bca)∗bcab ⊆
b(cab)∗ and therefore q2bcab is quasi-periodic on the left. The same holds for L

q
′e
1
bcab =

(bca)∗bcab ⊆ b(cab)∗. For Lwe introduce new rules:

qr2(g)→ ρlshiftl(q
e
2,q

e
2)+|bcab|[lcp(Lqe2)−1bca] qr2(x1)→ ρl4 mod 3[ε−1bca] qr2(x1)

→ ρl1[bca] qr2(x1)→ cab qr2(x1)

qr2(h)→ ε
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and we replace qe2 bcab by lcp(Lqe2bcab) q
r
2 = bcab qr2. Furthermore, we introduce for L′

the rules

q
′r
1 (g)→ ρl

shiftl(q
′e
1 ,q
′e)+|bcab|[lcp(L

q
′e
2

)−1bca] q
′r
1 (x1)→ ρl4 mod 3[ε−1bca] q

′r
1 (x1)

→ ρ1[bca] q
′r
1 (x1)→ cab q

′r
1 (x1)

q
′r
1 (h)→ ε

and we replace q
′e
1 bcab by lcp(L

q
′e
1
bcab) q

′r
1 = bcab q

′r
1 . The constructed L is defined by

the following rules:

q0(f)→ helloabcab qr2(x2) qe3(x1) cabend qe1(x3)

qe1(g)→ qe4(x1)

qr2(g)→ cab qr2(x1) qr2(g)→ ε

qe3(g)→ qe5(x1)

qe5(g)→ qe5(x1) cab qe5(h)→ ε

qe4(g)→ qe4(x1) qe4(h)→ ε

The constructed L′ is defined by the following rules:

q
′e
0 (f)→ helloabcab q

′r
1 (x2) q

′e
2 (x1) cabend q

′e
3 (x3)

q
′e
3 (g)→ q

′e
5 (x1)

q
′r
1 (g)→ cab q

′r
1 (x1) q

′r
1 (h)→ ε

q
′e
2 (g)→ q

′e
4 (x1)

q
′e
4 (g)→ cab q

′e
4 (x1) q

′e
4 (h)→ ε

q
′e
5 (g)→ q

′e
5 (x1) q

′e
5 (h)→ ε

In the last step we swap qr2(x2) qe3(x1) and q
′r
1 (x2) q

′e
2 (x1) since they are of the same

period. Note that both transducersL,L′ contain the exact same rules with the exception
of different state names. Duo to the complexity of the problem, our implementation
solves the problem on the mentioned machine in 4.3 hours.
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8. Discussion

The aim of the master thesis was to implement an efficient algorithm to solve the equiv-
alence problem for STWs and LTWs. We studied the theoretical background and all re-
quired ingredients. We gave all implementation details and an upper bound of our
implementation. We proved that our implementation solves the problem in polyno-
mial time. However, we also mentioned that the running time, even for small problem
instances, can be huge.

One possible improvement is to replace the recompression algorithm, described in
chapter 4 by the approach presented in [3]. If we look back to the creation of words of
the test set in chapter 5, we should mention that most of consecutive created Plandowski
paths differ only in one edge. Suppose we have two Plandowski edges

λ = (u1, v1), (u2, v2), (u3, v3), (u4, v4), (u5, v5), (u6, v6)

If we use the data structure presented in [3], we could add each non-terminal word and
each concatenation we already produced by traversing the grammar graph and the
trees. We could add all words of all incomplete Plandowski paths to the data structure
as well. Therefore, the word of the incomplete path

λ′ = (u1, v1), (u2, v2), (u3, v3), (u4, v4), (u5, v5)

would be contained in the data structure. To test whether

µ1(w(λ)) = µ2(w(λ))

holds, we have to add µ1(w(λ)), µ2(w(λ)) to the data structure under the condition that
µ1(w(λ′)), µ2(w(λ′)) was already added to the data structure. The running time would
be O(log(n + m)) where n and m is the size of the grammar of the SLP representing
µ1(w(λ′)) and the size of of the grammar of the SLP representing µ2(w(λ′)), respectively.
This outperforms the recompression algorithm, since we have many words which share
a common prefix. A second source for improvement is the upper bound of O(m6) of
the size of the test set, where m is the number of productions of the grammar. In the
future one might find a construction for a smaller test set.

Nevertheless, this is the first implementation that solves the equivalence problem for
STWs and LTWs in polynomial time. Furthermore, an object-oriented modular and
generic designed Java library, based on modern design patterns, has been created. The
library supports a large variety of operations to create, manipulate and work with CFGs,
SLPs, STWs and LTWs. The application area of fully compressed pattern matching and



8. Discussion

equivalence test (see chapter 4) is large and we offer a library that supports efficient
solvers for these problems.

For future work we suggest to focus on extending the library to support further equality
tests for other transducers like tree-to-tree transducers and to support the data structure
presented in [3]. Note that the equivalence of tree-to-tree transducers can be reduced to
equivalence of tree-to-word transducers that linearise output trees [52]. Consequently,
we can easily extend our implementation to obtain a polynomial time algorithm for
deciding the equivalence of deterministic top-down and bottom-up tree-to-tree trans-
ducers that are non-copying. In many settings it could make sense to use a heuristic
approach to reduce the running time of the algorithm. One might pick only a subset
of the test set described in chapter 5. We created the base for further adjustments and
improvements, which goes beyond the scope of this thesis.
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A. Algorithms

Here we list some algorithm we mentioned but not list in the main content of the thesis.

Algorithm 31: GETPRODUCTIVES: Computes the set of productives.

input : G = (∆, N, S, P );
output: ProdG;

1 Map← GETMAP(G);
2 H ← ∅;
3 ProdG ← ∅;
4 NT ← ∅;
5 foreach p ∈ P do
6 if p = X → α ∧ α ∈ ∆∗ then
7 H ← H ∪ p;
8 ProdG ← ProdG ∪ p;
9 NT ← NT ∪ lhs(p);

10 while H 6= ∅ do
11 p← first element contained in H ;
12 H ← H \ p;
13 foreach node ∈Map[lhs(p)] do
14 node.counter ← (node.counter − 1);
15 if node.counter = 0 then
16 ProdG ← ProdG ∪ node.p;
17 if lhs(node.p) /∈ NT then
18 H.push(node.p);
19 NT ← NT ∪ lhs(node.p);

20 return ProdG



A. Algorithms

Algorithm 32: GETWORD: Generates an SLP representing a word in L(G).

input : G = (∆, N, S, P ) reduced grammar, with L(G) 6= ∅;
output: SLP G = (∆, N, S, P ′) a word contained in L(G);

1 Map← GETMAP(G);
2 P ′ ← ∅;
3 len∗P ← ∅;
4 len∗N ← ∅;
5 H ← ∅ ; // unsorted heap
6 foreach p ∈ P do
7 if p = X → α ∧ α ∈ ∆∗ then
8 len∗P (p)← |α|;
9 H ← H ∪ p;

10 while H 6= ∅ do
11 p← first element contained in H ;
12 H ← H \ p;
13 if len∗N (lhs(p)) is undefined then
14 len∗N (lhs(p))← len∗P (p);
15 P ′ ← P ′ ∪ p;
16 foreach (q, counter) ∈Map[lhs(p)] do
17 counter ← (counter − 1);
18 if counter = 0 then
19 l← 0;
20 foreach X ∈ rhs(q) do
21 l← len∗N (X) + l

22 l← l+ number of terminals on rhs(q);
23 len∗P (q)← l;
24 if len∗N (lhs(q)) is undefined then
25 H ← H ∪ q;

26 return G′ = (∆, N, S, P ′)

IV



Algorithm 33: GETSHORTESTNONEMPTYWORD: Generates an SLP representing
the shortest non-empty word of a CFG.

input : G = (∆, N, S, P );
output: The shortest non-empty word of L(G);

1 G′ ← TOBINARY(G);
2 G′ ← TOEPSILONFREE(G′);
3 G′ ← GETUSEFUL(G′);
4 if p = S → ε ∈ P ′ then
5 P ′ ← P ′ \ {p};
6 if P ′ = ∅ then
7 return undefined;

8 else
9 return GETSHORTESTWORD(G′)

Algorithm 34: ISQPONTHERIGHT: Tests whether the state q is quasi-periodic on
the right and transforms q into a periodic state qe, if this is true.

input : LTW L = (Σ,∆, Q,QI , δ), q ∈ Q;
output: the result of the quasi-periodic test;

1 δq ← ∅;
2 create a fresh state qI ;
3 wq ← the smallest word of Lq;
4 Qacc ← states accessible from q;
5 foreach q′ ∈ Qacc do
6 add a copy q

′e to Qq;

7 foreach r = q′(f)→ u0q1(xσ(1)) . . . qn(xσ(n))un ∧ q′ ∈ Qacc do
8 w′ ← the smallest word of Lq′ ;
9 v ← the suffix of u0w1 . . . wnun of size |w′|;

10 u← ρshiftr(q,q′)[u0w1 . . . wnunv
−1];

11 δq ← δq ∪ q
′e(f)→ qe1(xσ(1)) . . . q

e
n(xσ(n))u;

12 if q′ = q then
13 δq ← δq ∪ qI(f)→ qe1(xσ(1)) . . . q

e
n(xσ(n))uwq;

14 T q ← (Σ,∆, Qq, {qI}, δq);
15 if Lqe is periodic ∧ JLKq = JT qK then
16 replace q in any right hand-side in r ∈ δ by qewq;
17 δ ← δ ∪ {r ∈ δq | lhs(q) 6= qI};
18 Q← Q ∪Qq;
19 return true;

20 else
21 return false;

V



A. Algorithms

Algorithm 35: STWEQUALS: Test whether two STWs are equivalent.

input : STWs S1,S2;
output: true if S1,S2 are equivalent, otherwise false;

1 if dom(S1) 6= dom(S2) then
2 return false;

3 else
4 transform S1 into an equivalent dN2W N1;
5 transform S2 into an equivalent dN2W N2;
6 construct the CFG G generating all successful parallel runs for N1,N2;
7 construct µ1, µ2 defined in section 6.2;
8 return MORPHSIMEQUALITY(G,µ1, µ2);

VI
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